European Society for Vascular Surgery (ESVS) 2023 Clinical Practice Guidelines on the Management of Atherosclerotic Carotid and Vertebral Artery Disease

TABLE OF CONTENTS

Abbreviations and acronyms ...5
What is new in the 2023 guidelines? ..6
New recommendations in the 2023 guidelines ..7
Unanswered questions from the 2017 guidelines ..8
1. Methodology ...9
 1.1. Purpose of the guidelines ..9
 1.2. Compliance with AGREE II standards ..10
 1.3. Guideline Writing Committee ..10
 1.4. Evidence collection ...10
 1.5. Studies commissioned for the guidelines ..10
 1.6. Recommendations ..10
 1.7. Review process ..11
 1.8. Audit and update plan ...11

2. Introduction ..11
 2.1. Definition of stroke and transient ischemic attack ...11
 2.2. Burden of stroke ..11
 2.3. Aetiology of stroke ..11
 2.4. Methods for measuring carotid artery stenosis severity ..12
 2.5. Imaging strategies in carotid artery disease ...12
 2.6. Role of the multidisciplinary team ..13

3. Management of asymptomatic carotid disease ..13
 3.1. Optimal medical therapy ..14
 3.1.1. Lifestyle measures ...14
 3.1.2. Antiplaquette therapy ..14
 3.1.2.1. Monotherapy ..14
 3.1.2.2. Combination ...14
 3.1.2.3. In patients undergoing carotid endarterectomy ..14
 3.1.2.4. In patients undergoing carotid artery stenting ..14
 3.1.3. Combination antiplaquette therapy and direct oral anticoagulants ..14
 3.1.4. Lipid lowering therapy ..16
 3.1.5. Management of hypertension ..16

* For a full list of the authors’ affiliations, please refer to Appendix B.

Guideline Writing Committee: Ross Naylor (Leicester, United Kingdom, chairperson), Barbara Rantner (Munich, Germany, co-chairperson), Stefano Ancetti (Bologna, Italy), Gert J. de Borst (Utrecht, Netherlands), Marco De Carlo (Pisa, Italy), Alison Halliday (Oxford, United Kingdom), Stavros K. Kakkos (Patras, Greece), Hugh S. Markus (Cambridge, United Kingdom), Dominick J.H. McCabe (Dublin, Ireland), Henrik Sillesen (Copenhagen, Denmark), Jos C. van den Berg (Lugano/Bern, Switzerland), Melina Vega de Ceniga (Osakidetza, Spain), Maarit A. Venermo (Helsinki, Finland), Frank E.G. Vermassen (Ghent, Belgium)

ESVS Guidelines Committee: George A. Antoniou (Manchester, UK), Frederico Bastos Goncalves (Lisbon, Portugal), Martin Bjorck (Uppsala, Sweden), Nabil Chakfe (Strasbourg, France), Raphael Coscas (Paris, France), Nuno V. Dias (Malmo, Sweden), Florian Dick (St Gallen, Switzerland), Robert J. Hinchliffe (Bristol, UK), Philippe Kolh (Liege, Belgium), Igor B. Koncar (Belgrade, Serbia), Jes S. Lindholt (Odense, Denmark), Barend M.E. Mees (Maastricht, the Netherlands), Timothy A. Resch (Copenhagen, Denmark), Santi Trimarchi (Milan, Italy), Riikka Tulamo (Helsinki, Finland), Christopher P. Twine (Bristol, UK), Anders Wanhainen (Uppsala, Sweden)

ESVS Guideline Reviewers: Sergi Bellmunt-Montoya (Barcelona, Spain), Richard Bulbulia (Oxford, UK), R Clement Darling, III (New York, USA), Hans-Henning Eckstein (Munich, Germany), Athanasios Giannoukas (Larissa, Greece), Mark J.W. Koellemay (Amsterdam, the Netherlands), David Lindström (Uppsala, Sweden), Marc Schermerhorn (Boston, USA), David H. Stone (Dartmouth, USA)

Corresponding authors. Leicesteer Vascular Institute, Glenfield Hospital, Leicester LE39QP, United Kingdom.
E-mail address: rs57@leicester.ac.uk (Ross Naylor).

3.1. Management of diabetes mellitus .. 16
3.1.1. Adherence to medications .. 17

3.2. Screening for asymptomatic carotid disease .. 17
3.2.1. Is stroke prevention important? .. 17
3.2.2. Unheralded stroke and asymptomatic carotid stenoses 17
3.2.3. Is duplex ultrasound reliable for diagnosing stenosis severity? 17
3.2.4. Prevalence of asymptomatic carotid stenoses 17
3.2.5. Can a high risk of stenosis cohort be identified? 17
3.2.6. Potential benefits of selective screening ... 17
3.2.7. Potential harms with screening ... 18
3.2.8. Does screening prevent ipsilateral stroke? .. 18
3.2.9. Who advocates routine or selective screening? 18

3.3. Randomised trials: endarterectomy versus best medical therapy 18
3.3.1. Medical therapy in the randomised trials .. 18
3.3.2. Outcomes in the randomised trials .. 18

3.4. Randomised trials: endarterectomy versus stenting 18
3.4.1. Age .. 18
3.4.2. Sex .. 18
3.4.3. Stenosis severity ... 18

3.5. Controversy regarding modern medical therapy 19

3.6. Who is at high risk of stroke on medical therapy? 20

3.7. Duplex surveillance in asymptomatic patients 20

3.8. Randomised trials: endarterectomy versus stenting 21
3.8.1. Thirty day outcomes in average risk patients 21
3.8.2. Long term outcomes in average risk of surgery patients 21
3.8.3. High risk for carotid endarterectomy patients 21
3.8.4. Should the 3% risk threshold for carotid interventions be modified? 21

3.10. Carotid revascularisation and cognitive impairment 24
3.10.1. Do asymptomatic carotid stenoses cause cognitive impairment? 24
3.10.2. Do carotid interventions improve cognition function? 24

4. Management of symptomatic carotid disease ... 25
4.1. Symptoms attributable to carotid and vertebral artery disease 25

4.2. Optimal medical therapy ... 25
4.2.1. Lifestyle measures .. 25
4.2.2. Antiplatelet therapy .. 25
4.2.2.1. Monotherapy .. 25
4.2.2.2. Combination .. 26
4.2.2.3. Prior to carotid artery stenting ... 27
4.2.2.4. Prior to carotid endarterectomy ... 29
4.2.2.4.1. Monotherapy .. 29
4.2.2.4.2. Combination therapy ... 29
4.2.2.5. When to prescribe gastric protection medications? 31
4.2.2.6. Combination antiplatelet therapy and direct oral antiocoagulants 32
4.2.2.7. Antiplatelet “high on treatment platelet reactivity” 32
4.2.2.8. Carotid interventions in patients on antiocoagulants 32
4.2.2.8.1. Assessing peri-operative bleeding risks: carotid endarterectomy 33
4.2.2.8.2. Assessing peri-operative bleeding risks: carotid artery stenting 33
4.2.2.8.3. Peri-operative antiplatelet and anticoagulation strategies 33
4.2.2.8.3.1. Carotid endarterectomy ... 33
4.2.2.8.3.2. Carotid artery stenting ... 33
4.2.2.8.4.1. Monotherapy ... 33
4.2.2.8.4.2. Combination therapy ... 33
4.2.2.8.5. Assessing peri-operative bleeding risks: carotid endarterectomy 33
4.2.2.8.6. Assessing peri-operative bleeding risks: carotid artery stenting 33
4.2.2.8.7. Peri-operative antiplatelet and anticoagulation strategies 33
4.2.2.8.7.1. Carotid endarterectomy ... 33
4.2.2.8.7.2. Carotid artery stenting ... 33
4.2.2.8.8.1. Monotherapy ... 33
4.2.2.8.8.2. Combination therapy ... 33
4.2.2.9. Assessing peri-operative bleeding risks: carotid endarterectomy 33
4.2.2.10. Blood pressure management during carotid endarterectomy 38
4.2.2.11. Blood pressure management during carotid endarterectomy 38
4.2.3. Management of hypertension ... 38
4.2.3.1. Secondary prevention in patients with stroke/transient ischaemia attack .. 38
4.2.3.2. Blood pressure management during carotid endarterectomy 38
4.2.9. Management of diabetes mellitus ... 38
4.2.10. Adherence to medications ... 38

4.3. Randomised trials: endarterectomy versus medical therapy 38
4.3.1. Thirty day and five year outcomes in the randomised trials 38
4.3.2. Who is at higher risk of stroke on medical therapy? 38

4.4. Randomised trials: endarterectomy versus stenting 38
4.4.1. Thirty day outcomes ... 38
4.4.1.1. Thirty day outcomes stratified by age .. 39
4.4.1.2. Long term outcomes ... 40
4.4.1.2.1. Late ipsilateral stroke ... 40
4.4.1.2.2. Quality of life .. 41
4.4.1.2.3. Survival following peri-operative stroke or myocardial infarction 41

4.5. Timing of carotid interventions after onset of symptoms 41
4.5.1. Risk of recurrent stroke over time .. 41
4.5.2. Timing of carotid endarterectomy in national registries and meta-analyses ... 42
4.5.3. Timing of carotid stenting in national registries and meta-analyses ... 42
4.5.4. Comparison of carotid endarterectomy with carotid artery stenting in the early time period after symptom onset 43
4.5.5. Transcarotid artery revascularisation outcomes stratified for timing after symptom onset .. 43
4.6. Should the 6% risk threshold for carotid interventions be reduced? ... 44
4.7. Intervening in neurologically unstable patients .. 45
4.8. Timing of carotid endarterectomy and carotid artery stenting after mechanical thrombectomy .. 46
4.9. Carotid endarterectomy and carotid artery stenting after mechanical thrombectomy .. 47
4.10. Patients with < 50% stenoses who may benefit from interventions ... 48
4.11. ‘High risk for surgery’ symptomatic patients .. 48
4.11.1. SAPHIRE defined high risk criteria ... 49
4.11.2. Increasing age .. 49
4.11.3. Cervical irradiation .. 49
4.11.4. Re-stenosis after carotid endarterectomy .. 49
4.11.5. Contralateral carotid occlusion .. 49
4.12. Managing patients with carotid ‘near occlusion’ .. 49
4.13. Management of free floating thrombus .. 50
4.15. Management of chronic ocular ischaemia syndrome .. 51
4.16. Symptomatic patients with > 50% stenosis and atrial fibrillation .. 52

5. Open surgical techniques .. 53
5.1. Carotid endarterectomy .. 53
5.1.1. Pre-operative checklist .. 53
5.1.2. Staged or synchronous bilateral carotid interventions? .. 53
5.1.3. Carotid endarterectomy under general versus locoregional anaesthesia? .. 53
5.1.4. Hospital and surgeon volumes .. 54
5.1.5. Transverse or longitudinal incision? ... 55
5.1.6. Antegrade or retrojugular exposure? .. 55
5.1.7. Carotid sinus nerve blockade? .. 55
5.1.8. Protamine reversal of heparin? .. 56
5.1.9. Shunting: routine, never, selective? ... 56
5.1.10. Patching: routine, never, selective? .. 56
5.1.11. Eversion carotid endarterectomy versus conventional carotid endarterectomy? ... 56
5.1.12. Management of coils, kinks, and loops ... 57
5.1.13. Monitoring and quality control after carotid endarterectomy ... 57
5.1.14. Management of high internal carotid artery lesions ... 57
5.1.15. Wound drainage ... 57
5.1.16. Ward, high dependency or intensive care post-operatively? ... 58
5.2. Carotid bypass ... 58
5.2.1. Indications ... 58
5.2.2. Technique .. 58
5.2.3. Results ... 58
5.3. Extracranial to intracranial bypass .. 58

6. Carotid artery stenting .. 59
6.1. Adjunct medical therapy ... 59
6.2. Access routes .. 59
6.2.1. Transfemoral .. 59
6.2.2. Transcarotid .. 59
6.2.3. Radial or brachial .. 59
6.3. Wires, catheters, and stent design .. 59
6.3.1. Carotid stent design ... 59
6.4. Pre-dilation and post-dilation.. 60
6.5. Cerebral protection devices .. 60
6.6. Hospital and individual operator volumes ... 61

7. Complications after carotid interventions ... 62
7.1. Peri-operative .. 62
7.1.1. Stroke after carotid endarterectomy .. 62
7.1.1.1. Intra-operative ... 62
7.1.1.2. Post-operative .. 62
7.1.1.3. Predictors of stroke after carotid endarterectomy ... 62
7.1.2. Stroke after carotid artery stenting ... 62
7.1.2.1. Predictors of stroke after carotid stenting .. 63
7.1.3. Haemodynamic instability .. 63
7.1.3.1. Post-endarterectomy hypotension .. 63
7.1.3.2. Post-stenting hypotension ... 63
7.1.3.3. Post-endarterectomy hypertension .. 64
7.1.3.4. Post-stenting hypertension ... 64
7.1.3.5. Hyperperfusion syndrome .. 64
7.1.4. Wound haematoma after carotid endarterectomy ... 65
7.1.5. Cranial nerve injury ... 65
7.1.6. New post-operative ischaemic brain lesions ... 65
7.2. Late complications .. 66
7.2.1. Prosthetic patch and stent infection ... 66
7.2.2. Re-stenosis after carotid interventions .. 67
7.2.2.1. Pathophysiology .. 67
7.2.2.2. Duplex ultrasound criteria for diagnosing re-stenosis severity 67
7.2.2.3. Duplex ultrasound surveillance after carotid interventions 67
7.2.2.4. Duplex ultrasound surveillance of the contralateral carotid and vertebrobasilar systems in secondary stroke prevention 67
7.2.2.5. Incidence of re-stenosis after carotid interventions 68
7.2.2.6. Asymptomatic re-stenosis and recurrent ipsilateral symptoms 68
7.2.2.7. Management of re-stenosis ... 68
7.2.2.7.1. Symptomatic re-stenosis ... 68
7.2.2.7.2. Asymptomatic re-stenosis ... 68
7.2.2.7.3. Redo endarterectomy or stenting? .. 68
8. Management of concurrent coronary and carotid disease 69
8.1. Stroke after cardiac surgery .. 69
8.2. Is carotid disease an important cause of stroke during cardiac surgery? 70
8.3. Screening cardiac surgery patients for asymptomatic carotid stenosis 70
8.4. Are carotid interventions indicated in cardiac surgery patients? 70
8.5. What surgical and endovascular options are available? 70
8.6. Managing patients with unstable coronary artery disease 72
9. Carotid disease and major non-cardiac surgery .. 73
9.1. Incidence of stroke after major non-cardiac surgery 73
9.2. Predicting stroke after major non-cardiac surgery 73
9.3. Timing of major surgery after recent stroke ... 73
9.4. Is there a role for prophylactic carotid endarterectomy or stenting? 73
10. Occlusive disease of common carotid and innominate arteries 76
10.1. Introduction ... 76
10.2. Clinical presentation .. 76
10.3. Indications for revascularisation ... 76
10.4. Endovascular versus open reconstruction .. 76
10.5. Open revascularisation: cervical versus transantrumoral 76
10.6. Tandem proximal inflow and internal carotid artery disease 76
11. Management of asymptomatic vertebrobasilar artery disease 77
11.1. Optimal medical therapy .. 77
11.2. Screening for asymptomatic vertebrobasilar disease 77
11.3. Interventions for asymptomatic vertebrobasilar artery disease 77
12. Management of symptomatic vertebrobasilar artery disease 77
12.1. Aetiology of vertebrobasilar stroke ... 77
12.2. Symptoms attributable to vertebrobasilar artery disease 77
12.3. Imaging strategies in vertebrobasilar artery disease 77
12.4. Optimal medical therapy .. 77
12.5. Role of vertebrobasilar revascularisation in positional vertigo 77
12.6. Interventions in recently symptomatic patients ... 78
12.6.1. Non-randomised studies ... 78
12.6.2. Randomised studies ... 78
12.6.2.1. Meta-analysis of randomised trials ... 78
12.6.3. Endovascular techniques .. 78
12.6.3.1. Adjutant medical therapy ... 78
12.6.3.2. Access ... 79
12.6.3.3. Wires, catheters, and stent design ... 79
12.6.3.4. Cerebral protection devices .. 79
12.6.3.5. Pre-dilation .. 79
12.6.4. Open surgical management ... 79
12.6.5. Complications after vertebrobasilar artery interventions 79
12.6.5.1. Open surgery ... 79
12.6.5.2. Endovascular interventions ... 79
12.6.5.2.1. Peri-operative events ... 80
12.6.5.2.2. In stent re-stenosis after vertebrobasilar artery stenting 80
12.6.6. Surveillance after vertebrobasilar artery revascularisation 80
13. Unanswered questions from the 2023 ESVS guidelines 80
14. Information for the patient ... 81
14.1. How are carotid and vertebral artery narrowing classified, and can their appearance predict an individual patient’s stroke risk? 81
14.2. Is screening for carotid artery stenosis worthwhile? 82
14.3. What problems can carotid and vertebral artery disease cause and what warning signs should members of the public look out for? 82
14.4. Can doctors predict which people with carotid disease are most at risk of suffering a stroke? .. 83
14.5. Does carotid artery disease cause dementia? ... 83
14.6. Are chronic kidney disease and carotid artery disease connected? 84
14.7. What is meant by best medical therapy? .. 84
14.8. Which interventions are currently available? .. 84
14.9. What does carotid endarterectomy involve? ... 84
14.10. What does carotid artery stenting involve?

14.11. Following surgery or stenting, is scanning to detect a recurrent narrowing necessary?

14.12. How can patients prevent recurrent symptoms or recurrent narrowings?

14.13. Do patients who have a stroke due to narrowings in their vertebral arteries need an operation or stent, in addition to medical treatment?

Supplementary data

References

ABBREVIATIONS AND ACRONYMS

ACAS Asymptomatic Carotid Atherosclerosis Study
ACE Aspirin and Carotid Endarterectomy Trial
ACES Asymptomatic Carotid Emboli Study
ACS Asymptomatic carotid stenosis
ACRS Stenosis and Risk of Stroke Study
ACST Asymptomatic Carotid Surgery Trial (1 & 2)
ACT-1 Asymptomatic Carotid Trial-1
AHA American Heart Association
APRx Antiplatelet therapy
ARR Absolute risk reduction
ARWMC Age related white matter change
AF Atrial fibrillation
BA Basilar artery
BES Balloon expandable stent
BMS Bare metal stent
BMI Body mass index
BMT Best medical therapy
BP Blood pressure
CA Carotid angioplasty
CABG Coronary artery bypass graft
CAD Coronary artery disease
CAS Carotid artery stenting
CAVATAS Carotid & Vertebral Artery Transluminal Angioplasty Study
CaW Carotid web
CCA Common carotid artery
CCF Congestive cardiac failure
CEA Carotid endarterectomy
CCEA Carotid endarterectomy
CEMRA Contrast enhanced magnetic resonance angiography
CETC Carotid Endarterectomy Trialists Collaboration
CFA Common femoral artery
CI Confidence Interval
CNI Cranial nerve injury
CNO Carotid near occlusion
COMPASS Cardiovascular Outcomes for People Using Anticoagulation Strategies
COPD Chronic obstructive pulmonary disease
CoW Circle of Willis
CPD Cerebral protection device
CREST Carotid Revascularisation vs. Stenting Trial
CSTC Carotid Stent Trialists Collaboration
CT Computerised tomography
CTA Computerised tomography angiography
CVR Cerebral vascular reserve
DAPT Dual antiplatelet therapy
DBP Diastolic blood pressure
DES Drug eluting stent
DLS Dual layer stent
DM Diabetes mellitus
DOAC Direct oral anticoagulant
DSA Digital subtraction angiography
DUS Duplex ultrasound
DWI Diffusion weighted imaging
EAS European Atherosclerosis Society
ECA External carotid artery
ECEA Eversion carotid endarterectomy
ECG Electrocardiogram
EC-IC Extracranial intracranial
ECST European Carotid Surgery Trial
EEG Electroencephalography
EJVES European Journal of Vascular and Endovascular Surgery
ESC European Society of Cardiology
ESH European Society of Hypertension
ESO European Stroke Organisation
ESVS European Society for Vascular Surgery
EVA-3S Endarterectomy vs. Stenting in patients with Symptomatic Severe carotid Stenosis
FLAIR Fluid attenuated inverse recovery
FFT Free floating thrombus
GA General anaesthesia
GC Guidelines Committee
GWC Guideline Writing Committee
HLD High Dependency Unit
HR Hazard ratio
HRF High risk feature
HS Hyperperfusion syndrome
HTPR High on treatment platelet reactivity
ICA Internal carotid artery
ICH Intracerebral haemorrhage
ICSS International Carotid Stenting Study
IPH Intraplaque haemorrhage
IA Innominate artery
ISR In stent re-stenosis
ITU Intensive therapy unit
i.v. Intravenous
JBA Juxtaluminal black area
LAA Large artery atherosclerosis
LDL-C Low density lipoprotein cholesterol
LMWH Low molecular weight heparin
LRA Locoregional anaesthesia
MCA Middle cerebral artery
MDT Multidisciplinary team
MES Micro-embolic signals
MI Myocardial infarction
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRA</td>
<td>Magnetic resonance angiography</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>mRS</td>
<td>Modified Rankin Score</td>
</tr>
<tr>
<td>MT</td>
<td>Mechanical thrombectomy</td>
</tr>
<tr>
<td>NASCET</td>
<td>North American Symptomatic Carotid Endarterectomy Trial</td>
</tr>
<tr>
<td>NIBL</td>
<td>New ischaemic brain lesion</td>
</tr>
<tr>
<td>NIHSS</td>
<td>National Institutes of Health Stroke Score</td>
</tr>
<tr>
<td>OR</td>
<td>Odds Ratio</td>
</tr>
<tr>
<td>PAD</td>
<td>Peripheral arterial disease</td>
</tr>
<tr>
<td>PCA</td>
<td>Posterior cerebral artery</td>
</tr>
<tr>
<td>PCSK9</td>
<td>Proprotein convertase subtilisin/kexin type 9</td>
</tr>
<tr>
<td>PPI</td>
<td>Proton pump inhibitor</td>
</tr>
<tr>
<td>PSV</td>
<td>Peak systolic velocity</td>
</tr>
<tr>
<td>PTFE</td>
<td>Polytetrafluoroethylene</td>
</tr>
<tr>
<td>QC</td>
<td>Quality control</td>
</tr>
<tr>
<td>QIP</td>
<td>Quality improvement programme</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomised controlled trial</td>
</tr>
<tr>
<td>rTPA</td>
<td>Recombinant Tissue Plasminogen Activator</td>
</tr>
<tr>
<td>RLN</td>
<td>Recurrent laryngeal nerve</td>
</tr>
<tr>
<td>RR</td>
<td>Relative risk</td>
</tr>
<tr>
<td>RRI</td>
<td>Relative risk increase</td>
</tr>
<tr>
<td>RRR</td>
<td>Relative risk reduction</td>
</tr>
<tr>
<td>SAPPHIRE</td>
<td>Stenting & Angioplasty with Protection in Patients at High Risk for Endarterectomy</td>
</tr>
<tr>
<td>SAMMPRIS</td>
<td>Stenting & Aggressive Medical Management for Preventing Recurrent Stroke & Intracranial Stenosis</td>
</tr>
<tr>
<td>SBP</td>
<td>Systolic blood pressure</td>
</tr>
<tr>
<td>SCS</td>
<td>Symptomatic carotid stenosis</td>
</tr>
<tr>
<td>SVS</td>
<td>Society for Vascular Surgery (North America)</td>
</tr>
<tr>
<td>SPACE</td>
<td>Stent Protected Angioplasty vs. Carotid Endarterectomy</td>
</tr>
<tr>
<td>SSEP</td>
<td>Somatosensory evoked potentials</td>
</tr>
<tr>
<td>TCD</td>
<td>Transcranial Doppler</td>
</tr>
<tr>
<td>TCAR</td>
<td>Transcarotid artery revascularisation</td>
</tr>
<tr>
<td>TFCAS</td>
<td>Transfemoral carotid artery stenting</td>
</tr>
<tr>
<td>TIA</td>
<td>Transient ischaemic attack</td>
</tr>
<tr>
<td>TOAST</td>
<td>Trial of ORG 10172 in Acute Stroke Treatment</td>
</tr>
<tr>
<td>TRA</td>
<td>Transradial artery access</td>
</tr>
<tr>
<td>TT</td>
<td>Thrombolytic therapy</td>
</tr>
<tr>
<td>UFH</td>
<td>Unfractionated heparin</td>
</tr>
<tr>
<td>USPSTF</td>
<td>US Preventive Services Taskforce</td>
</tr>
<tr>
<td>VACS</td>
<td>Veterans Affairs Co-operative Study</td>
</tr>
<tr>
<td>VA</td>
<td>Vertebral artery</td>
</tr>
<tr>
<td>VAST</td>
<td>Vertebral Artery Stenting Trial</td>
</tr>
<tr>
<td>VB</td>
<td>Vertebrobasilar</td>
</tr>
<tr>
<td>VISSIT</td>
<td>Vitesse Intracranial Stent Study for Ischaemic Stroke Therapy</td>
</tr>
<tr>
<td>VAST</td>
<td>Vertebral Artery Ischaemia Stenting Trial</td>
</tr>
<tr>
<td>VKA</td>
<td>Vitamin K antagonist</td>
</tr>
<tr>
<td>VQI</td>
<td>Vascular Quality Initiative</td>
</tr>
<tr>
<td>VSGNE</td>
<td>The Vascular Surgery Group of New England</td>
</tr>
</tbody>
</table>

WHAT IS NEW IN THE 2023 GUIDELINES?

Each section has been revised or rewritten and five new sections added: (i) management of free floating thrombus (**section 4.13**), (ii) management of carotid webs (**section 4.14**), (iii) management of symptomatic patients with an ipsilateral 50—99% carotid stenosis and atrial fibrillation (AF) (**section 4.16**), (iv) planning carotid interventions in anticoagulated patients (**section 4.2.6**), and (v) timing of carotid interventions in patients with acute ischaemic stroke undergoing thrombolysis (**section 4.8**). The 2023 European Society for Vascular Surgery (ESVS) carotid and vertebral guidelines also highlight similarities/discrepancies with the 2021 American Heart Association (AHA) guidelines on the management of stroke/transient ischaemic attack (TIA), the 2021 European Stroke Organisation (ESO) guidelines on carotid endarterectomy (CEA) and carotid artery stenting (CAS), the 2021 German-Austrian guidelines on the management of carotid disease, and the 2021 Society for Vascular Surgery (SVS) guidelines on the management of patients with carotid and vertebral artery disease. There are 133 recommendations, of which, 84 are unchanged, 11 have been “regraded” since 2017 and 38 are new. The 2023 ESVS guidelines benefit from 289 new references (240 published between 2017 and 2022), including 39 primary or secondary analyses from randomised controlled trials (RCTs), 71 systematic reviews and/or meta-analyses, and data from 50 vascular registries or quality initiative programmes (QIPs). There is an expanded section on “best medical therapy” (BMT) in asymptomatic (**section 3.1**) and symptomatic patients (**section 4.2**). There are new sections on the role of combination antiplatelet therapy (APRx) in recently symptomatic patients (**section 4.2.2.2**), including the peri-operative period (**sections 4.2.2.3 and 4.2.2.4**); thresholds for treating hypertension (**section 4.2.8**); and targets for lipid lowering therapy (**section 4.2.7.3**). There is a rewritten section on the relationship between asymptomatic carotid stenosis (ACS) and cognitive impairment (**section 3.10**). Since 2017, there is evidence that ACS patients with impaired cerebral vascular reserve (CVR) may be more likely to develop cognitive decline, but there remains no compelling evidence that CEA or CAS improves or prevents cognitive impairment. In the section on timing of CEA after thrombolysis (TT), meta-regression analyses suggest that a delay of six days after lysis completion should be considered before performing CEA, to maintain 30 day death/stroke rates within the 6% recommended threshold (**section 4.8**). The impetus towards treating symptomatic patients as soon as possible after transient ischaemic attack (TIA) or minor stroke is retained (**section 4.5**), with CEA being preferred over transfemoral CAS (TFCAS) when interventions are performed in the first 7 — 14 days after symptom onset (**section 4.5.4**). Whilst transcatheter artery revascularisation (TCAR) has emerged as a promising new CAS technology since 2017, only one registry has reported outcomes stratified for delays from symptom onset to TCAR (**section 4.5.5**). The recommendation that patients with 60—
99% ACS in the presence of one or more clinical or imaging features that make them higher risk for stroke on best medical therapy, and who should be considered for CEA or CAS has been retained (section 3.6), but 80–99% ACS was not added to the high risk criteria. The rationale underlying this decision is detailed in section 3.6. The section on CAS techniques has been expanded to reflect advances in technology since 2017 (section 6) and there is an updated section on carotid interventions after mechanical thrombectomy (MT) (section 4.9). The guidelines conclude with a list of “unanswered questions”, which highlight areas for future research (section 13), and a new section on Information for the Patient (section 14).

NEW RECOMMENDATIONS IN THE 2023 GUIDELINES

New Class I recommendations

11. For patients with asymptomatic carotid stenosis who are undergoing carotid endarterectomy, lower dose aspirin (75–325 mg daily) rather than higher dose aspirin (> 325 mg daily) is recommended.

23. For symptomatic carotid stenosis patients who are not being considered for carotid endarterectomy or stenting following a transient ischaemic attack or minor ischaemic stroke, short term aspirin plus clopidogrel for 21 days followed by clopidogrel monotherapy, or long term aspirin plus dipyridamole modified release is recommended.

24. For recently symptomatic carotid stenosis patients who are not being considered for carotid endarterectomy or stenting who are intolerant of, or allergic to, aspirin and clopidogrel, dipyridamole monotherapy or ticagrelor monotherapy is recommended.

25. For recently symptomatic carotid stenosis patients in whom carotid endarterectomy is being considered, it is recommended that neurologists/stroke physicians and vascular surgeons develop local protocols to specify preferred antiplatelet regimens (combination therapy vs. monotherapy), so as not to delay urgent carotid surgery.

29. For symptomatic patients undergoing carotid endarterectomy on aspirin monotherapy, lower dose aspirin (75 – 325 mg daily) rather than higher doses (> 325 mg daily) is recommended.

30. In symptomatic carotid stenosis patients undergoing carotid endarterectomy who are intolerant of, or allergic to, aspirin and clopidogrel, dipyridamole modified release monotherapy (200 mg twice daily) is recommended.

35. For symptomatic carotid stenosis patients who do not reach their lipid targets on maximum doses or maximum tolerated doses of statins, ezetimibe (10 mg daily) is recommended.

38. For patients presenting with recent carotid territory symptoms and evidence of free floating thrombus within the carotid artery, therapeutic anticoagulation is recommended.

63. For patients with a transient ischaemic attack or minor ischaemic stroke in the presence of newly diagnosed or known atrial fibrillation and an ipsilateral 50–99% carotid stenosis, comprehensive neurovascular work up with multidisciplinary team review is recommended to determine whether urgent carotid revascularisation or anticoagulation alone is indicated.

64. For patients who have been started on anticoagulation (on the basis that cardiac embolism was considered the most likely cause of their transient ischaemic attack or stroke) but who then report recurrent event(s) in the territory ipsilateral to a 50–99% carotid stenosis whilst on therapeutic levels of anticoagulation, carotid endarterectomy or carotid artery stenting is recommended.

66. For patients undergoing carotid endarterectomy, it is recommended that the operation be performed by trained vascular surgeons, rather than by surgeons from other specialties.

91. For patients experiencing a peri-operative stroke, it is recommended to differentiate between an intra-operative and a post-operative stroke.

92. For patients who develop an ipsilateral neurological deficit after flow is restored following carotid clamp release when carotid endarterectomy is performed under locoregional anaesthesia, immediate re-exploration of the carotid artery is recommended.

93. For patients who develop an ipsilateral or contralateral stroke at any time period following carotid endarterectomy or carotid artery stenting, urgent diagnostic neurovascular imaging of both carotid arteries and the brain is recommended.

New Class IIa recommendations

10. For patients with >50% asymptomatic carotid stenosis who are intolerant or allergic to aspirin, clopidogrel 75 mg daily should be considered. If intolerant or allergic to both aspirin and clopidogrel, dipyridamole monotherapy (200 mg twice daily) should be considered.

14. For patients with asymptomatic carotid stenosis with dyslipidaemia who are intolerant of statins, with or without ezetimibe, lipid lowering therapy with PCSK9 inhibitors should be considered.

27. For recently symptomatic patients with a 50–99% carotid stenosis who are to undergo carotid endarterectomy, peri-operative combination antiplatelet therapy should be considered, and should be started after imaging has excluded intracranial haemorrhage.

28. In recently symptomatic patients with a 50–99% carotid stenosis who are to undergo carotid endarterectomy where antiplatelet monotherapy is preferred to combination therapy, aspirin (300–325 mg daily for 14 days, followed by 75–162 mg daily) should be considered.

36. For symptomatic carotid stenosis patients who are intolerant of, or not achieving target low density lipoprotein levels on statins, with or without ezetimibe, additional or alternative treatment with PCSK9 inhibitors should be considered.

49. For patients with acute ischaemic stroke due to a symptomatic 50–99% carotid stenosis who have received intravenous thrombolysis, delaying carotid endarterectomy or carotid stenting by six days following completion of thrombolysis should be considered.

54. For recently symptomatic patients with 50–99% stenoses and contralateral carotid occlusion or previous cervical radiation therapy, the choice of carotid endarterectomy or carotid artery stenting should be considered on an individual basis.

62. For patients with confirmed ocular ischaemia syndrome and a 50–99% ipsilateral carotid stenosis, carotid endarterectomy or carotid stenting should be considered to prevent further ischaemia induced retinal neovascularisation.
NEW RECOMMENDATIONS INCLUDED IN THE EUROPEAN SOCIETY FOR VASCULAR SURGERY 2022 CLINICAL PRACTICE GUIDELINES ON THE MANAGEMENT OF ATHEROSCLEROTIC CAROTID AND VERTEBRAL ARTERY DISEASE IN COMPARISON TO THE PREVIOUS 2017 GUIDELINES. NUMBERS CORRESPOND TO THE NUMBERS OF THE RECOMMENDATIONS IN THE GUIDELINE DOCUMENT.

UNANSWERED QUESTIONS FROM THE 2017 GUIDELINES

In the 2017 guidelines, a series of “unanswered questions” were identified as being priorities for future research. These involved scenarios where there were either no data, or conflicting evidence that did not allow recommendations to be made. The current guidelines have addressed some of the questions (see below). “Unanswered questions” arising from the 2023 guidelines are detailed in section 13.

Is there a validated algorithm for identifying higher risk of stroke ACS patients?

The six “higher risk of stroke on BMT” criteria in the 2017 ESVS guidelines have been corroborated by a 2020 meta-analysis of 64 observational studies, with the new data summarised in section 3.6.

Does ACS cause cognitive decline and can this be reversed or prevented by CEA or CAS?

A 2021 systematic review identified significant associations between ACS and cognitive impairment (section 3.7), but without clear evidence of a causal relationship, apart from in patients with impaired CVR. Impaired CVR is an ESVS criterion for being at higher risk of stroke on BMT in patients in whom CEA (should) or CAS (may) be considered. A second systematic review found no evidence that CEA/CAS significantly improved cognitive function in ACS patients.

Should symptomatic patients start combination antiplatelet therapy once parenchymal haemorrhage is excluded on computed tomography (CT) or magnetic resonance imaging (MRI)?

Addressed in sections 4.2.2.2 and 4.2.2.4. A meta-analysis of RCTs showed that early institution of combination APRx significantly reduced non-fatal ischaemic and haemorrhagic stroke, fatal ischaemic stroke, moderate to severe functional disability, and poor quality of life at 90 days vs. aspirin alone in patients with a high risk TIA or minor ischaemic stroke. The 2023 guidelines include a new algorithm detailing various perioperative combination APRx strategies.

What is the relevance of new DW-MRI lesions after CEA and CAS, and do they contribute to higher rates of recurrent stroke or cognitive decline?
Since 2017, a large study involving patients undergoing non-cardiac surgery reported that post-operative new ischaemic brain lesions (NIBLs) were associated with cognitive impairment, and increased rates of recurrent stroke/TIA.166 The International Carotid Stenting Study (ICSS) also showed that NIBLs were associated with higher rates of recurrent stroke/TIA167 (section 7.1.6).

Which recently symptomatic patients with < 50% stenoses might benefit from urgent CEA or CAS?

Addressed in section 4.10. In selected patients experiencing recurrent TIAs or minor ischaemic stroke, despite BMT and who have a < 50% stenosis, CEA or CAS may be considered, but only after multidisciplinary team (MDT) review.

What is the optimal timing for CEA or CAS after intravenous TT after acute ischaemic stroke?

Addressed in section 4.8. Meta-regression analyses of non-randomised studies showed that performing CEA early after TT was associated with significantly higher risks, with the absolute risk of stroke/death being reduced to within the current 6% accepted risk threshold after six days had elapsed after TT.56 There remains debate as to whether CEA should be deferred for six days in all TT patients, or only in those with CT/MRI evidence of acute infarction.

Which symptomatic patients are at ‘high risk for CEA’ in whom one should preferentially perform CAS?

Addressed in section 4.11 Vascular registries have proposed several clinical and imaging criteria that were considered to make a patient higher risk for CEA. However, many have now been shown to be incorrect.

Which symptomatic patients are at ‘high risk for CAS’ in whom one should preferentially perform CEA?

Addressed in section 7.1.2.1 and includes anatomical variables associated with increases in peri-operative stroke,70 age > 70,168 performing transfemoral CAS < 7 days after TIA/stroke,170 long or sequential carotid stenoses,171 heavy calcification,172 and a high age related white matter change (ARWMC) score.173

What is the optimal brain protection method during transfemoral CAS: none, distal filter, proximal protection?

The role of cerebral protection and evidence for varying types of protection systems are addressed in section 6.5. There are no RCT data, but expert consensus remains that some form of protection should be used during CAS.

Should symptomatic patients with vertebrobasilar TIA/ stroke be started on combination APRx once parenchymal haemorrhage is excluded on CT/MRI?

No RCTs have addressed this question in patients with vertebrobasilar (VB) symptoms. However, a meta-analysis of three RCTs59 in patients with minor ischaemic stroke or TIA (which included VB patients) showed that early institution of combination APRX significantly reduced non-fatal ischaemic and haemorrhagic stroke, fatal ischaemic stroke, moderate to severe functional disability and poor quality of life at 90 days vs. aspirin alone(section 4.2.2.2). Recommendations regarding APRx in VB patients are the same as for carotid territory stroke/TIA.

What is the optimal method for detecting VA re-stenoses after stenting?

Duplex ultrasound (DUS) may be performed after stenting of ostial or proximal VA lesions (section 12.7). Suspected re-stenoses should be corroborated by CT angiography (CTA) or MR angiography (MRA). Distal VA interventions require surveillance with CTA/MRA.

How should > 70% asymptomatic re-stenoses after VA stenting be managed?

Only one registry (n = 72) has addressed this question174 (section 12.6.5.2). Re-intervention did not significantly reduce stroke/TIA at one year (vs. BMT patients), but 33% of treated patients developed recurrent re-stenoses. Recurrent re-stenoses were significantly more likely to occur after balloon angioplasty than redo stenting.

1. METHODOLOGY

1.1. Purpose of the guidelines

ESVS has prepared guidelines for treating patients with atherosclerotic carotid and VA disease, in succession to the 2009 and 2017 versions.165,175 Non-atherosclerotic pathologies (arteritis, fibromuscular dysplasia, dissection, aneurysm) are not included as they will be the subject of a separate guideline. Potential users include vascular surgeons, neurologists, angiologists, stroke physicians, primary care doctors, cardiologists, and interventional radiologists. A key aim is to optimise “shared decision making”, where the patient has choice and control over how they prefer to be treated and how their care is delivered. This requires the doctor to provide as much evidence based information as possible regarding all available treatment options (i.e., not just those preferred by the treating doctor), together with a balanced discussion of risks, benefits, and potential consequences in a manner the patient understands, and which takes account of his/her preferences. Guidelines promote standards of care but are not a legal standard of care. They are a “guiding principle” and care delivered depends on patient presentation, choice, comorbidities, and setting (techniques available, local expertise). The 2023 guidelines are published in the European Journal of Vascular and Endovascular Surgery (EJVES), as an online open access publication, as well as being free to access via the ESVS website. They will also be available on a dedicated ESVS App.
1.2. Compliance with AGREE II standards

AGREE II reporting standards for assessing the quality and reporting of practice guidelines were adopted during preparation of the 2023 guidelines and a checklist is available (Appendix A). There was no formal evaluation of Facilitators and Barriers and the guidelines did not have the scope to go into detail regarding health economics, largely because individual countries have different processes for determining cost acceptability.

1.3. Guideline Writing Committee

Guideline Writing Committee (GWC) members were selected by the GWC chairs and ESVS Guidelines Committee (GC) chair to represent clinicians involved in decision making in patients with atherosclerotic carotid and VA disease. The GWC comprised vascular surgeons, stroke physicians/neurologists, interventional radiologists, and interventional cardiologists (see Appendix B for specialty and institution). Views and preferences for the target population were not sought directly, but Mr Chris Macey of the Irish Heart Foundation and the Stroke Alliance for Europe collaborated in preparing section 14 (Information for Patients). GWC members provided disclosure statements regarding relationships that could be perceived as conflicts of interest (these are filed and available at ESVS headquarters via info@esvs.org). GWC members received no financial support from any pharmaceutical, device, or industry body, to develop the guidelines.

1.4. Evidence collection

A video conference was held on 6 July 2020, at which topics and tasks were allocated. The GWC met monthly (by video conference) to review progress. Search strategies were undertaken for each of the 46 subsections, using Medline, Embase, and the Cardiosource Clinical Trials and Cochrane databases to 31 December 2020, plus reference checking of cited papers. Hand searches were undertaken of publications in 11 journals between 2017 and 2020 including: EJVES, the Journal of Vascular Surgery, Annals of Vascular Surgery, Stroke, The Journal of Stroke and Cerebrovascular Disease, Neurology, Lancet Neurology, Cerebrovascular Diseases, the International Journal of Stroke, Stroke and Vascular Neurology, and the European Stroke Journal. At the request of the GC, selected articles published between January and December 2021 were included if they added important information that influenced decision making and recommendations. Only peer reviewed publications were included, following the Pyramid of Evidence principle (Tables 1 and 2). Multiple RCTs or meta-analyses of multiple RCTs were at the top, then single RCTs or large non-randomised studies (including meta-analyses of large non-RCTs), meta-analyses of small non-RCTs, observational studies, case series, and large prospective audits. Expert opinion was at the bottom of the pyramid, while case reports and abstracts were excluded. The evidence used in each of the 38 new recommendations is detailed in the Tables of Evidence (Appendix C).

1.5. Studies commissioned for the guidelines

Four systematic reviews/meta-analyses were commissioned: (i) the association between ACS and cognitive impairment; (ii) the effect of carotid interventions on cognitive function in ACS patients; (iii) the effect of carotid interventions on outcomes in the early time period after symptom onset; and (iv) the effect of carotid interventions on outcomes in patients with acute ischaemic stroke undergoing TT.

1.6. Recommendations

The European Society of Cardiology (ESC) system was used to develop classes of recommendation and levels of evidence. The strength (class) is graded from I to III, with I being the strongest (Table 1). The letters A, B, C denote evidence levels (Table 2), with A being the highest.

Table 1. Classes of recommendations according to the ESC (European Society of Cardiology)

<table>
<thead>
<tr>
<th>Class of recommendation</th>
<th>Definition</th>
<th>Suggested wording</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>Evidence and/or general agreement that a given treatment or procedure is beneficial, useful and effective</td>
<td>Is recommended</td>
</tr>
<tr>
<td>Class II</td>
<td>Conflicting evidence and/or a divergence of opinion about the usefulness/efficacy of the given treatment or procedure</td>
<td>Should be considered</td>
</tr>
<tr>
<td>Class IIa</td>
<td>Weight of evidence/opinion is in favour of usefulness/efficacy</td>
<td>Should be considered</td>
</tr>
<tr>
<td>Class IIb</td>
<td>Usefulness/efficacy is less well established by evidence/opinion</td>
<td>May be considered</td>
</tr>
<tr>
<td>Class III</td>
<td>Evidence or general agreement that the given treatment or procedure is not useful/effective, and in some cases may be harmful</td>
<td>Is not recommended, should not be done</td>
</tr>
</tbody>
</table>

Table 2. Levels of evidence according to the ESC (European Society of Cardiology)

<table>
<thead>
<tr>
<th>Level of evidence A</th>
<th>Data derived from multiple randomised clinical trials or meta-analyses of randomised trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of evidence B</td>
<td>Data derived from a single randomised clinical trial or large non-randomised studies</td>
</tr>
<tr>
<td>Level of evidence C</td>
<td>Consensus of opinion of experts and/or small studies, retrospective studies, registries</td>
</tr>
</tbody>
</table>

Recommendations were developed by GWC members assigned to each section and all GWC members then reviewed each completed section and approved the final wording and grading of the recommendation. During preparation of the first (and subsequent) drafts, GWC members participated in video conferences where the wording and grading of all
recommendations were checked before being submitted for external review. If there was not unanimous agreement to begin with, regarding the grading/wording of recommendations, discussions were held to decide how this might be achieved. Ultimately, the wording and grading of all published recommendations secured unanimous agreement among the GWC, although a majority vote (11:3) was taken on the decision not to include 80–99% ACS as a “high risk of stroke on medical therapy” criterion in ACS patients (section 3.6).

Since 2017, the GC undertook a review of the criteria for grading the class and level of evidence, to ensure these were standardised for future ESVS guidelines, especially regarding subgroup analyses from RCTs. A modified ESC system was used to classify the level of evidence and to determine the strength of recommendation. In this modified system, RCT meta-analyses are level A; larger non-RCT meta-analyses are level B; while meta-analyses of small non-randomised studies are level C. Furthermore, predefined subgroup analyses of RCTs or large RCT subgroup analyses can be level A, while other subgroup analyses of RCTs should be considered level B. As a consequence, while the wording of 11 recommendations remains essentially unchanged (compared with 2017), grades of evidence have been revised and the relevant recommendation box is highlighted as having been “changed”.

1.7. Review process

There were three rounds of external review, involving 25 reviewers (16 GC members plus nine external reviewers). Review comments were assessed by the co-chairs, who coordinated a response to each comment via a formal revision process and GWC video conferences. The final version was approved by GWC members before submission to EJVES Editors on 6 April 2022.

1.8. Audit and update plan

These guidelines will be updated every four years. Vascular centres are encouraged to audit implementations made as a result of the guidelines. Audit cycles should be repeated and changes implemented. There are many ways to perform clinical audit and it is now a requirement for most centres to be registered with local audit committees.

2. INTRODUCTION

Primary prevention aims to reduce the clinical impact of ACS and VA stenoses (to prevent TIA or stroke). The goal of secondary prevention is to prevent recurrent TIA, stroke or vascular events in patients presenting with TIA or ischaemic stroke, secondary to carotid or VA stenoses.

2.1. Definition of stroke and transient ischaemic attack

The term “cerebrovascular accident” has been replaced with TIA or stroke. Because many studies in carotid stenosis patients pre-dated debates about whether to classify TIA/stroke as time based or tissue based,178 this guideline has retained time based definitions. TIA is an episode of focal brain, retinal, or spinal cord dysfunction lasting < 24 hours, which is of a non-traumatic, vascular origin.179 Crescendo TIAs refer to multiple TIAs in a short time period, defined by some as more than two TIAs in 24 hours,180 or at least three events in seven days,181 with full recovery between. Stroke is a sudden onset focal (rather than global) neurological dysfunction, with symptoms lasting > 24 hours (or causing death in < 24 hours), which is of non-traumatic, vascular origin.179 Stroke in evolution refers to a fluctuating neurological deficit (without full recovery), or a progressively worsening neurological deficit over 24 hours.180

2.2. Burden of stroke

In a European population of 715 million, 1.4 million strokes occur annually.127 Stroke accounts for 1.1 million deaths annually in Europe and is the second commonest cause of death after coronary artery disease (CAD).127 It is suggested that the number of Europeans living with stroke as a chronic condition may increase by 25% from 3.7 million (2015) to 4.6 million (2035), as a result of the ageing population.155 Including indirect costs, European health systems spent €45 billion annually on stroke care in 2015.155 In the United States of America, total stroke costs were $49.5 billion (€43.9 billion) in 2015 — 2016,182 and are expected to increase to $129 billion (€114 billion) by 2035.183

2.3. Aetiology of stroke

Of strokes, 15–20% are haemorrhagic (intracranial [ICH], subarachnoid), while 20% of ischaemic strokes are vertebralbasilar (VB). The Trial of ORG 10172 in Acute Stroke Treatment (TOAST) classification for TIA/ischaemic stroke includes five categories: (1) large artery atherosclerosis (LAA): defined as ≥50% stenosis or occlusion of an extra- or intracranial artery; (2) cardioembolic; (3) small vessel occlusion; (4) other aetiologies (arteritis, dissection); and (5) undetermined aetiology (two potential causes, no cause identified, incomplete investigations).184 In 2 204 ischaemic stroke patients, LAA was responsible for 16.6% of strokes. An ipsilateral 50–99% carotid stenosis was identified in 8%, while carotid occlusion or intracranial disease accounted for 3.5% each.185 In another prospective study (883 patients with carotid territory symptoms), 4% had 50–69% ipsilateral carotid stenoses, while 8% had 70–99% stenosis. Overall, 12.5% had an ipsilateral 50–99% stenosis, while another 5.2% had ipsilateral occlusion.121 The proportion of LAA strokes may be declining, in association with proportional increases in cardioembolic stroke,180 attributed to declines in total cholesterol, low density lipoprotein cholesterol (LDL-C), blood pressure (BP), increases in high density lipoprotein cholesterol,187 and substantial increases in APRx, antihypertensive, and statin prescriptions.186 Between 2002 and 2014, there was a 30% decline in the prevalence of 60–99% carotid stenoses and a 36% decline in 80–99% stenoses in patients referred to a TIA/stroke service.187
2.4. Methods for measuring carotid artery stenosis severity

The European Carotid Surgery Trial (ECST)\(^{188}\) and the North American Symptomatic Carotid Endarterectomy Trial (NASCET)\(^{189}\) adopted different methods for measuring stenosis (Figure 1).

Both methods used residual lumen diameter as the numerator. In ECST, the denominator was the estimated vessel diameter where the residual lumen was measured (usually the carotid bulb). In NASCET, the denominator was the diameter of disease free internal carotid artery (ICA) above the stenosis, where vessel walls were parallel. A 50% NASCET stenosis equates to a 75% ECST, while a 70% NASCET stenosis equates to an 85% ECST (Figure 1).\(^{190}\) Uncertainty about methods used can lead to inappropriate patient selection (exclusion) for interventions.\(^{191}\) The NASCET method has been adopted in the current guidelines, unless stated otherwise. The NASCET method does not permit measurement of stenosis severity in large volume plaques in dilated carotid bulbs. Here, the lumen may be slightly less than that of the distal ICA, so NASCET records a < 50% stenosis, while ECST measures > 70%. Symptomatic patients with large volume plaques consistent with an ECST > 70% stenosis should, therefore, be considered for revascularisation.

The NASCET method has limitations regarding chronic near occlusion (CNO) with distal vessel collapse (section 4.12) unless the contralateral ICA is used as the denominator. In the RCTs, angiographic criteria for differentiating between CNO and a severe stenosis without distal collapse included at least two of (i) delayed contrast filling above ipsilateral stenosis; (ii) recruitment of circle of Willis (CoW) or distal ICA collaterals; (iii) diameter of distal ipsilateral ICA less than contralateral ICA; and (iv) distal ICA diameter equal to or less than diameter of the ipsilateral external carotid artery (ECA).\(^{17}\) CNO with complete vessel collapse and a “threadlike” distal lumen (previously known as string sign, slim sign, or subocclusion) and CNO with partial vessel collapse have a prevalence < 10% in patients with significant carotid disease.\(^{192}\) Because angiograms are not routinely performed, CTA criteria have been developed to differentiate CNO from a 90—95% stenosis with no distal vessel collapse, including (i) residual lumen ≤ 1.3 mm; (ii) ipsilateral distal ICA diameter ≤ 3.5 mm; (iii) ratio of ipsilateral distal ICA diameter to contralateral ICA ≤ 0.87; and (iv) ratio of ipsilateral distal ICA diameter to ipsilateral ECA diameter ≤ 1.27.\(^{193}\) It has also been proposed that the combination of distal ICA diameter ≤ 2 mm and an ICA diameter ratio ≤ 0.42 offers better prognostic discrimination.\(^{194}\)

2.5. Imaging strategies in carotid artery disease

During ECST and NASCET, all participants underwent intra-arterial angiography. This policy has now been abandoned because of angiogram related stroke. In the Asymptomatic Carotid Atherosclerosis Study (ACAS), 30 day death/stroke after CEA was 2.3%, but half of the peri-operative strokes were angiogram related.\(^{195}\) Colour DUS is the first line imaging modality due to low cost and accessibility and there are consensus criteria for diagnosing stenosis severity.\(^{196–198}\) Alternatives include CTA or MRA which can simultaneously image the aortic arch, supra-aortic trunks, carotid bifurcation, distal ICA and intracranial circulation, which is important if CAS is being considered. Contrast enhanced MRA (CEMRA) has higher accuracy than non-contrast MRA (time of flight) but requires paramagnetic contrast agents (gadolinium). In a Health Technology Assessment meta-analysis of 41 non-randomised studies, DUS, MRA and CTA were equivalent in detecting significant stenoses,\(^{199}\) but it was advised that centres relying on DUS before CEA should perform a second DUS, preferably by a second operator.\(^{200}\) A combination of two imaging modalities (DUS + CTA or DUS + MRA) improves accuracy and is routine practice in many centres.\(^{200}\) Table 3 summarises the sensitivity and specificity of DUS, CTA, and CEMRA, compared with the gold standard of digital

Method used in NASCET

\[
(1 - N/D) \times 100 = \% \text{ stenosis}
\]

\[
* \text{e.g. } N = 2.5 \quad D = 5.0
\]

\[
(1 - 2.5/5.0) \times 100 = 50\%
\]

Method used in ECST

\[
(1 - N/E) \times 100 = \% \text{ stenosis}
\]

\[
* \text{e.g. } N = 2.5 \quad E = 12.0
\]

\[
(1 - 2.5/12.0) \times 100 = 79\%
\]

* Incorrect site of denominator measurement

Figure 1. North American Symptomatic Carotid Endarterectomy Trial (NASCET) and European Carotid Surgery Trial (ECST) methods for measuring carotid stenosis severity.
subtraction angiography (DSA). Patients with ACS or SCS also benefit from functional CT/MRI imaging. In ACS patients, the presence of silent infarction confers a higher risk of stroke (section 3.6). In symptomatic patients, increasing acute infarction size predicts higher risks of stroke or intracranial haemorrhage after carotid revascularisation (section 4.7).

Table 3. Sensitivity and specificity of duplex ultrasound (DUS), computed tomographic angiography (CTA), and contrast enhanced magnetic resonance angiography (CEMRA), compared with digital subtraction angiography (DSA) in imaging of carotid artery disease

<table>
<thead>
<tr>
<th></th>
<th>DUS</th>
<th>CTA</th>
<th>CEMRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity (%)</td>
<td>Occlusion</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Stenosis</td>
<td>89</td>
<td>75–85</td>
</tr>
<tr>
<td>Specificity (%)</td>
<td>Occlusion</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Stenosis</td>
<td>84</td>
<td>93–96</td>
</tr>
</tbody>
</table>

* Data derived from Rojona\(^1\) and Wardlaw.\(^9\)

Recommendation 1

For patients undergoing evaluation of the extent and severity of extracranial carotid stenoses, duplex ultrasound, computed tomographic angiography and/or magnetic resonance angiography are recommended.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>B</td>
<td>Wardlaw et al. (2006)(^10^), Patel et al. (2002)(^20^)</td>
<td></td>
</tr>
</tbody>
</table>

Recommendation 2

For patients where carotid endarterectomy is being considered, it is recommended that duplex ultrasound stenosis estimation be corroborated by computed tomographic angiography or magnetic resonance angiography, or by a repeat duplex ultrasound performed by a second operator.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>B</td>
<td>Wardlaw et al. (2006)(^10^)</td>
<td></td>
</tr>
</tbody>
</table>

Recommendation 3

For a patient where carotid artery stenting is being considered, it is recommended that any duplex ultrasound study be followed by computed tomographic angiography or magnetic resonance angiography, which will provide additional information on the aortic arch, as well as the extra- and intracranial circulation.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>B</td>
<td>Wardlaw et al. (2006)(^10^)</td>
<td></td>
</tr>
</tbody>
</table>

Recommendation 4

In units which base management decisions in patients with atherosclerotic carotid disease on duplex ultrasound measurement, it is recommended that reports should state which measurement method is used.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>C</td>
<td>Walker et al. (2006)(^10^)</td>
<td></td>
</tr>
</tbody>
</table>

Recommendation 5

For patients with atherosclerotic disease being considered for revascularisation, intra-arterial digital subtraction angiography is not recommended, unless there are significant discrepancies on non-invasive imaging.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>B</td>
<td>Wardlaw et al. (2006)(^10^)</td>
<td></td>
</tr>
</tbody>
</table>

2.6. Role of the multidisciplinary team

Where possible, decisions about carotid interventions should involve an MDT, which might include neurologists or stroke physicians, vascular surgeons, and interventional cardiologists or radiologists. This advice is supported by the 2021 ESO and German-Austrian guidelines.\(^1^\) MDTs increase the proportion undergoing urgent CEA (22% vs. 4%, \(p < .001\)).\(^2\) Waiting for MDT meetings should not introduce unnecessary delay and urgent decisions can be made by at least two members. Procedural risks vary according to who assesses the patient. In a systematic review of 50 studies (\(n = 15 \text{,}956\)), 30 day death/stroke was 7.7% (95% CI 5.0 – 10.2) if the assessor was a neurologist vs. 2.3% (95% CI 1.8 – 2.7) where the surgeon adjudicated outcomes.\(^2\) The German ProCAS Stent registry observed that neurologist assessment reported higher rates of transient (8.2% vs. 5.1%) or permanent neurological deficits (3.3% vs. 0.9%), vs. assessments undertaken by the operator performing CAS.\(^3\)

Recommendation 6

Multidisciplinary team review is recommended to reach consensus decisions regarding the indications for, and treatment of, patients with carotid stenosis regarding carotid endarterectomy, carotid stenting or optimal medical therapy.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>C</td>
<td>Bazan et al. (2014)(^4^)</td>
<td></td>
</tr>
</tbody>
</table>

Recommendation 7

Independent neurological assessment before and after carotid interventions is recommended to audit peri-procedural risks.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>C</td>
<td>Rothwell et al. (1995)(^5^), Theiss et al. (2004)(^6^)</td>
<td></td>
</tr>
</tbody>
</table>

3. MANAGEMENT OF ASYMPTOMATIC CAROTID DISEASE

An asymptomatic carotid artery stenosis (ACS) refers to a stenosis detected in patients without any clinical history of ischaemic stroke, TIA, or other neurological symptoms which might be referable to the carotid arteries. These were the inclusion criteria adopted by ACAS,\(^1^\) while patients randomised within ACST-1 should not have reported any symptoms referable to the ipsilateral ACS within the preceding six months.\(^2\)
3.1. Optimal medical therapy

Most primary prevention RCTs did not specifically recruit ACS patients, focussing primarily on stroke prevention in general. Some did include ACS patients or published subgroup analyses in ACS patients, and these have been highlighted where appropriate.

3.1.1. Lifestyle measures. Patients with ACS or symptomatic carotid stenoses (SCS) require lifestyle advice about diet, exercise, smoking cessation, and weight loss. Diets should be high in fruits, vegetables, whole grains, nuts, and legumes; moderate in low fat dairy and seafood; and low in processed meats, sugar sweetened drinks, refined grains, and sodium.205 In a meta-analysis of four ACS screening cohorts, smoking increased the prevalence of > 70% ACS (odds ratio [OR] 3.0; 95% CI 2.1 – 4.4),206 plaque progression,207 and ischaemic stroke (relative risk increase [RRI] 1.9; 95% CI 1.7 – 2.2).208 Moderate to high exercise conferred a 25% relative risk reduction (RRR) in stroke,209 while obesity was associated with major increases in stroke (RRI 1.64; 95% CI 1.36 – 1.99).210 The AHA recommended exercise intensity to prevent cardiovascular disease is 30 minutes, five times a week to reach at least 150 minutes per week of moderate exercise, or 25 minutes, three times a week to reach at least 75 minutes per week of vigorous activity.211 A US Preventive Services Task Force (USPSTF) meta-analysis of nine RCTs (n = 12 551) evaluated behavioural counselling to promote healthy diets and physical activity. There was a reduced risk of cardiovascular events at 24 months (RRR 0.80; 95% CI 0.73 – 0.87) attributed to substantial reductions in BP, LDL-C, fasting glucose, and obesity.212

3.1.2. Antiplatelet therapy

3.1.2.1. Monotherapy. Only one RCT (which did not show benefit) and one observational study (which did show benefit) evaluated APRx in patients with > 50% ACS on BMT (Table 4).

Two thirds of ACS patients have subclinical CAD.214 In a systematic review of 17 observational studies in 11 391 patients with > 50% ACS, 63% of deaths were cardiac (average annual cardiac mortality 2.9%).215 A meta-analysis of primary prevention trials reported that aspirin conferred a 12% reduction in serious vascular events, mainly through reduced non-fatal myocardial infarction (MI), 0.18% vs. 0.23% per year (HR 0.77; 95% CI 0.67 – 0.89, p < .001).216 There are no large scale RCT data on the efficacy of clopidogrel, dipyridamole, ticagrelor, or prasugrel in ACS patients. If intolerant of aspirin, clopidogrel is a reasonable alternative, based on data extrapolation from ischaemic stroke patients.81,217 If intolerant of, or allergic to, aspirin and clopidogrel, 200 mg dipyridamole twice daily is an alternative,81 also based on data extrapolation from TIA/stroke patients.218

3.1.2.2. Combination. No RCT data support long term aspirin + clopidogrel or aspirin + dipyridamole in ACS patients, unless for other clinical indications.

3.1.2.3. In patients undergoing carotid endarterectomy. In the Aspirin and Carotid Endarterectomy Trial (ACE), 2 849 ACS/SCS patients undergoing CEA were randomised to four doses of aspirin (81 mg, 325 mg, 650 mg, 1 300 mg). In an efficacy analysis, which excluded patients on ≥ 650 mg aspirin before randomisation, the composite risk of 30 day stroke/MI/death was statistically significantly lower in patients randomised to 81 – 325 mg aspirin (3.7%) vs. 650 – 1 300 mg (8.2%; p < .001).219 No RCTs have evaluated clopidogrel monotherapy or combination APRx in ACS patients undergoing CEA. If aspirin intolerant, it is reasonable to prescribe clopidogrel.81 If intolerant or allergic to aspirin and clopidogrel, 200 mg dipyridamole monotherapy is an alternative.81

3.1.2.4. In patients undergoing carotid artery stenting. Table 5 summarises two RCTs evaluating APRx (and i.v. heparin) in patients undergoing CAS. In RCTs comparing CEA with CAS in ACS patients, aspirin + clopidogrel was recommended for > 24 hours222,225 to three days pre-operatively,224,225 and for two to four weeks223,224 or at least six weeks222,225 post-procedurally in CAS patients. The choice of three days pre-treatment with clopidogrel 75 mg daily (without a loading dose) is based on evidence that clopidogrel's maximum antiplatelet effect occurs after three to five days of therapy.220 In CREST, aspirin 325 mg twice daily and clopidogrel 75 mg twice daily was recommended for ≥ 48 hours before CAS, followed by aspirin 325 mg daily for 30 days, combined with either clopidogrel 75 mg daily or ticlopidine 250 mg twice daily for at least four weeks.227 Patients were not randomised to different APRx regimens in the larger RCTs and ticlopidine is no longer used because of unfavourable side effects.

3.1.3. Combination antiplatelet therapy and direct oral anticoagulants. The Cardiovascular Outcomes for People Using Anticoagulation Strategies (COMPASS) trial randomised 27 395 patients with stable atherosclerotic disease, defined as CAD, peripheral arterial disease (PAD), or carotid disease (prior CEA/CAS or ≥ 50% ACS) to 100 mg enteric coated aspirin daily (n = 9 126), combination low dose rivaroxaban (2.5 mg twice daily) plus 100 mg aspirin daily (n = 9 152) or 5 mg twice daily rivaroxaban (n = 9 117).17 After a mean follow up of 23 months, the composite endpoint of stroke, MI, or cardiovascular death was statistically significantly reduced from 5.4% in aspirin patients to 4.1% with low dose rivaroxaban + aspirin (HR 0.76; 95% CI 0.66 – 0.86, p < .001). There was, however, a statistically significantly higher rate of major bleeding complications with combination therapy (3.1% vs. 1.9%; HR 1.7, 95% CI 1.4 – 2.05, p < .001).17
Within COMPASS, 1,919 had carotid disease, but patients were excluded if they had a “non-lacunar” ischaemic stroke within one month of randomisation or had a history of lacunar or haemorrhagic stroke. After a median follow up of 21 months, there was a non-statistically significant reduction in the composite endpoint from 6.1% (aspirin) to 3.9% with low dose rivaroxaban + aspirin (HR 0.63; 95% CI 0.38–1.05, \(p = .07 \)). The upper limit of the 95% CI was close to 1.0, suggesting the subgroup analysis was underpowered as a result of insufficient carotid patients being recruited. There was no statistically significant increase in major bleeding risks with low dose rivaroxaban + aspirin vs. aspirin alone (HR 1.18; 95% CI 0.55–2.51, \(p = .61 \)). Higher dose rivaroxaban did not reduce major vascular events in carotid patients (HR 1.01; 95% CI 0.65–1.56) but increased major bleeding risks (HR 2.34; 95% CI 1.21–4.52, \(p = .009 \)). Despite forest plots showing similarly beneficial results in carotid patients and those with PAD and CAD, further trials are required before low dose rivaroxaban + aspirin can be recommended as routine antithrombotic treatment in well phenotyped ACS patients. No other guideline currently recommends low dose rivaroxaban + aspirin in ACS patients.\(^{5,4} \)

Table 4. Studies evaluating antiplatelet therapy in asymptomatic carotid stenosis patients

<table>
<thead>
<tr>
<th>Study name</th>
<th>Stenosis severity</th>
<th>Study method</th>
<th>Follow up time</th>
<th>Principle findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic Cervical Bruit Study(^{112})</td>
<td>50–100%</td>
<td>RCT: 325 mg enteric coated aspirin daily ((n = 188)) vs. placebo ((n = 188))</td>
<td>Median 2.3 y</td>
<td>No difference in composite endpoint of TIA, ischaemic stroke, unstable angina, MI and any cause death between groups (HR 0.99, 95% CI 0.67–1.46, (p = .61))</td>
</tr>
<tr>
<td>Asymptomatic Carotid Emboli Study(^{213})</td>
<td>70–99%</td>
<td>Observational: APRx ((n = 419)) vs. no APRx ((n = 58)) at baseline</td>
<td>Mean 2 y</td>
<td>APRx significantly reduced risk of ipsilateral stroke or TIA (HR 0.45, 95% CI 0.31–0.66) and any stroke or cardiovascular death (HR 0.13, 95% CI 0.06–0.27) vs. no APRx</td>
</tr>
</tbody>
</table>

RCT = randomised controlled trial; APRx = antiplatelet therapy; TIA = transient ischaemic attack; MI = myocardial infarction; HR = hazard ratio; CI = confidence interval.

Table 5. Randomised controlled trials (RCTs) evaluating antiplatelet and intravenous heparin therapy in patients undergoing carotid artery stenting

<table>
<thead>
<tr>
<th>Study</th>
<th>Stenosis severity</th>
<th>Method</th>
<th>Antithrombotic therapy</th>
<th>Main findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dalainas(^{210})</td>
<td>70–99%</td>
<td>RCT ((n = 100; 88) with ACS)</td>
<td>325 mg aspirin daily for 7 d pre-CAS + 24 h i.v. heparin post-op, then 325 mg aspirin daily vs. 325 mg aspirin daily + 250 mg ticlopidine twice daily for 7 d pre-CAS and 30 d post-CAS, then 325 mg aspirin daily</td>
<td>Aspirin + heparin associated with significant increase in ipsilateral; ischaemic stroke/TIA (16%) vs. 2% ((p < .05)). No difference in bleeding complications (4 vs. 2%; (p > .05))</td>
</tr>
<tr>
<td>McKeitt(^{221})</td>
<td>70–99%</td>
<td>RCT ((n = 47; 9) with ACS)</td>
<td>75 mg aspirin daily + 24 h i.v. heparin (APTT ratio 1.5–2.5) vs. 75 mg aspirin daily + clopidogrel (300 mg stat 6–12 h pre-op, 75 mg 2 h pre-op + 75 mg daily for days 1–28)</td>
<td>Aspirin + heparin associated with significant increase in 30 d ipsilateral amaurosis fugax, TIA, any stroke (25 vs. 0%, (p = .02)). No difference in incidence of groin haematoma (17 vs. 9%; (p = .35))</td>
</tr>
</tbody>
</table>

ACS = asymptomatic carotid stenosis; TIA = transient ischaemic attack; APTT = activated partial thromboplastin clotting time.
3.1.4. Lipid lowering therapy. No RCTs have evaluated lipid lowering therapy in ACS patients. A post hoc analysis from the Asymptomatic Carotid Surgery Trial-1 (ACST-1) reported that patients taking statins had lower 10 year rates of non-peri-operative stroke vs. no statins (13.4% vs. 24.1%). In a meta-analysis of 27 RCTs ($n = 174,419$), statins were associated with statistically significant reductions in stroke in people with a ≤ 10% five year predicted risk of major vascular events (RR 0.76, 95% CI 0.61 – 0.95, $p < .001$) per 1 mmol/L reduction in LDL-C. Because of higher rates of cardiovascular events in ACS patients and low rates of serious adverse effects with treatment, statins (with or without ezetimibe) are recommended as for SCS patients (section 4.2.7), independent of age and presence of hyperlipidaemia. At present, evidence is lacking to support specific LDL-C targets in ACS patients. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors may stabilise plaques, but no RCTs included large numbers of ACS patients. However, in ACS patients with hyperlipidaemia who are intolerant of statins or ezetimibe, it is reasonable to consider PCSK9 inhibitors.

3.1.5. Management of hypertension. Hypertension increases the likelihood of developing ACS, and treatment in adults with ICA stenosis (vs. placebo) reduces stenosis progression (14% vs. 31%; $p = .02$). No RCT has evaluated antihypertensive therapy for stroke prevention in ACS patients, but in a meta-analysis of 61 observational studies (1 million adults), there was a relationship between BP and stroke or death. Between 40 and 69 years of age, every 20 mmHg increase in systolic blood pressure (SBP), or 10 mmHg increase in diastolic blood pressure (DBP), was associated with a twofold increase in stroke/death. Differences in vascular morbidity/mortality were half as pronounced in patients aged 80 — 89 years. The influence of age was similar in men vs. women and for cerebral ischaemia vs. haemorrhage. In another meta-analysis of 25 RCTs in patients with no vascular disease (standardised for 10 mmHg SBP and 5 mmHg DBP reduction), there was a reduction in late stroke (RR 0.54; 95% CI 0.45 — 0.65). In another RCT, in hypertensive patients ($n = 20,702$) with no prior stroke/MI, enalapril + folic acid (vs. enalapril alone) reduced first ever stroke (HR 0.79; 95% CI 0.68 — 0.93). The GWC advise adoption of ESC-European Society for Hypertension (ESC-ESH) recommendations, which the GWC consider reasonable for treating ACS and SCS patients. The ESC-ESH guidelines recommend a target BP ≤ 130 mmHg/≤ 80 mmHg in non-diabetic patients < 65 years of age and < 140 mmHg/< 80 mmHg in non-diabetic patients ≥ 65 years old. In diabetic patients, ESC-ESH advise a target SBP of $120 – 129$ mmHg and a DBP of $70 – 79$ mmHg in patients < 65 years of age and a target SBP of $130 – 139$ mmHg and a DBP of $70 – 79$ mmHg in patients ≥ 65 years.

3.1.6. Management of diabetes mellitus. Diabetes mellitus (DM) patients are more likely to develop stroke (vs. the general population without DM) and 20% of DM patients will die after a stroke. DM is associated with a higher prevalence of ACS, hypertension, and abnormal lipid profiles, but neither plaque burden nor plaque instability are increased in DM patients. No RCTs have been performed in ACS patients, but in type II DM patients randomised to intensive versus conventional therapy, intensive intervention with multiple drug combinations and
behaviour modification was associated with a 60% RRR in cardiovascular events (HR 0.41; 95% CI 0.25 — 0.69, p < .001) and cardiovascular death (HR 0.43; 95% CI 0.19 — 0.94, p = .04). In the Collaborative Atorvastatin Diabetes Study (2 838 type II DM patients without increased cholesterol levels), there was a reduction in stroke in patients treated (vs. not treated) with atorvastatin 10 mg/day (RRR 48%; 95% CI 11 — 69). Meta-analyses found no evidence that optimal glycaemic control reduced stroke risk, but it did reduce other DM related complications. The Prospective Pioglitazone Clinical Trial in macro-Vascular Events (PROACTIVE) trial (n = 5 238) reported that 45 mg pioglitazone (+ existing glucose lowering and cardiovascular medications), lowered stroke risks in type II DM patients. Accordingly, it is important to aim for optimal glycaemic control in ACS patients, as per DM guidelines.

3.2. Screening for asymptomatic carotid disease

The rationale for screening is that: (i) the condition being prevented is important, has a latent phase, and its natural history is fully understood; (ii) there is a reliable screening test, acceptable to the population in question; (iii) there is an accepted treatment for screen positive patients and an agreed policy for who to treat; and (iv) interventions should be cost effective.

3.2.1. Is stroke prevention important? Section 2.2 summarises the burden and costs associated with stroke, which is also an important cause of long term disability.

3.2.2. Un heralded stroke and asymptomatic carotid stenoses. About 15% of ischaemic strokes are caused by an ipsilateral 50%—99% carotid stenosis or occlusion. Stroke in ACS patients has decreased over the last decade (section 2.3), attributed to BMT and risk factor control.

3.2.3. Is duplex ultrasound reliable for diagnosing stenosis severity? The USPSTF noted that DUS was accessible and non-invasive, with 94% sensitivity and 92% specificity for diagnosing 60—99% ACS. Accuracy varied (especially in inexperienced hands) and indiscriminate use in low prevalence populations resulted in low positive predictive values, as a result of high numbers of false positives. The USPSTF reported that screening 100 000 adults for 60—99% ACS with a predicted prevalence of 1% yielded 893 true positives plus 7 920 false positives. Even if all false positive tests underwent CEMRA, 792 with false positive scans might undergo CEA or CAS (almost as many as the 893 true positives).

3.2.4. Prevalence of asymptomatic carotid stenoses. The prevalence of > 50% and > 70% ACS in 23 706 people recruited from four general population based cohorts was 2% and 0.5%, respectively. In a 2020 global meta-analysis, the prevalence of > 50% ACS in patients aged 30—79 years was 1.5% (95% CI 1.1 — 2.1), but this represented a 59% increase since 2000.

3.2.5. Can a high risk of stenosis cohort be identified? Poorthuis validated a model to identify > 50% and > 70% ACS, involving 596 000 people attending screening clinics. Notable predictors included increasing age, male sex, smoking, DM, prior stroke/TIA, CAD, PAD, high BP, and raised lipids. Using the highest risk decile in this model, one patient with > 50% ACS was detected for every 58 patients screened (while one patient with > 70% stenosis was found for every 58 patients screened). Screening of the highest decile might therefore identify 41% of people with > 50% stenosis and 51% with > 70% ACS.

3.2.6. Potential benefits of selective screening. Screening permits risk factor modification and BMT optimisation in screen detected patients, irrespective of stenosis severity. “Higher risk of stroke on BMT” patients may be candidates for CEA or CAS (section 3.6). In a study on compliance, 3 532 participants prescribed primary prevention therapy were randomised to undergo (or not) DUS. Patients randomised to

| Table 6: Duplex ultrasound prevalence of >50% and >70% asymptomatic carotid stenosis in the general population |
|---|---|---|
| Age – y | Stenosis – % | Stenosis prevalence – % |
| | Men | Women |
| <50 | >50 | 0.2 | 0.0 |
| >70 | 0.1 | 0.0 |
| 50—59 | >50 | 0.7 | 0.5 |
| >70 | 0.2 | 0.1 |
| 60—69 | >50 | 2.3 | 2.0 |
| >70 | 0.8 | 0.2 |
| 70—79 | >50 | 6.0 | 3.6 |
| >70 | 2.1 | 1.0 |
| >80 | >50 | 7.5 | 5.0 |
| >70 | 3.1 | 0.9 |

* Based on data from de Weerdt et al.
3.2.7. Potential harms with screening. Patients may undergo unnecessary interventions following a false positive screen, and some may suffer peri-operative stroke/death. Meta-analyses of RCTs comparing CEA with CAS report a 30 day death/stroke of 3.17% after CAS and 2.24% after CEA (section 3.3.2). There may also be patient anxiety associated with screening.

3.2.8. Does screening prevent ipsilateral stroke? There is no evidence that screening the general population reduces stroke and no RCTs have evaluated the benefits of screening vs. non-screening for ACS.

3.2.9. Who advocates routine or selective screening? All published guidelines advise against routine screening. The 14-Society, ESC, SVS and German-Austrian guidelines recommend screening patients with multiple risk factors, provided they are willing to consider CEA or CAS if substantial stenosis is found.3,4,256–258 SVS risk factors include PAD, age > 65 years with CAD, smoking, or hypercholesterolaemia, while 14-Society advice is to include those with no clinical evidence of atherosclerosis but with at least two of: hypertension, hyperlipidaemia, smoking, family history of stroke, or early onset atherosclerosis.256 The 2021 USPSTF guidelines advise against any form of ACS screening.105 ESO made no recommendation.2

Recommendation 17

Routine population screening for asymptomatic carotid stenosis is not recommended.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>IIb</td>
<td>Consensus</td>
</tr>
</tbody>
</table>

Recommendation 18

For patients with two or more vascular risk factors, selective screening for asymptomatic carotid stenosis may be considered in order to optimise risk factor control and medical therapy. The main purpose is to reduce late cardiovascular morbidity and mortality, rather than identifying candidates for carotid interventions.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIb</td>
<td>IIb</td>
<td>AburHama et al. (2022), Poorthuis et al. (2021), Poorthuis et al. (2021), Brott et al. (2011), Cosentino et al. (2020), Mach et al. (2019)</td>
</tr>
</tbody>
</table>

3.3. Randomised trials: endarterectomy versus best medical therapy

The Veteran’s Affairs Co-operative Study (VACS), ACAS, and ACST-1 compared CEA plus BMT vs. BMT alone in 5 526 ACS patients.195,204,259 Angiogram related stroke in patients randomised to CEA was included in intention to treat analyses.195

3.3.1. Medical therapy in the randomised trials. In VACS, 650 mg aspirin (daily) was taken by 55% of patients, while 27% took lower doses. Antihypertensive therapy was less commonly prescribed in VACS, and no patient received statins. In ACAS and ACST-1, BP, APRx, and lipid lowering therapy increased (13% of ACAS patients were on lipid lowering therapy at entry vs. 32% in ACST-1),195,204,259

3.3.2. Outcomes in the randomised trials. Table 7 details early and late outcomes in the three RCTs. In VACS and ACAS, half of all peri-operative strokes in CEA patients occurred after angiography.195,259 VACS reported no difference in any or ipsilateral stroke at four years.259 ACST found that CEA conferred notable reductions in any stroke at five and 10 years,228 while ACAS reported that CEA conferred notable reductions in ipsilateral and any stroke at five years.195

3.4. Important subgroup analyses

3.4.1. Age. ACST-1 published outcomes stratified for age (< 65 years [n = 912]; 65 – 74 years [n = 1 558], and > 75 years [n = 650]). Excluding peri-operative risks, CEA patients aged < 65 years had a five year risk of any stroke of 1.8% vs. 9.6% after BMT (ARR 7.8%; 95% CI 4.3 – 11.3). CEA patients aged 65 – 74 years had a five year risk of any stroke of 2.2% vs. 9.7% after BMT (ARR 7.5%; 95% CI 4.7 – 10.3), while CEA patients aged > 75 years had a 5.5% risk of any stroke at five years vs. 8.8% after BMT (ARR 3.3%; 95% CI 1.9 – 8.4).228 Half of those aged > 75 who were randomised to CEA died in less than five years and once peri-operative risks (3.7%) were included, there was no evidence that CEA conferred benefit in patients aged > 75 years.204 However, selected patients aged > 75 years with a predicted life expectancy of more than five years and at least one clinical/imaging feature that may make them “higher risk of stroke on BMT” might benefit from intervention (section 3.6).

3.4.2. Sex. A meta-analysis of ACAS and ACST-1 data at five years reported that men randomised to BMT were twice as likely to have a stroke vs. CEA (HR 2.04; 95% CI 1.5 – 2.8), while CEA did not appear to benefit women (OR 0.96; 95% CI 0.63 – 1.45).260 At 10 years, however, ACST-1 reported that women gained benefit from CEA (ARR 5.8%; 95% CI 1.1 – 11.4), as did men (ARR 5.5%; 95% CI 0.9 – 10).228 Reasons for the lack of early benefit in women may be that while procedural risks after CEA were similar to men, long term stroke risks on BMT were lower in women, so benefit took longer to accrue.

3.4.3. Stenosis severity. ACST-1 and ACAS reported that increasing stenosis severity was not associated with higher rates of stroke in BMT patients.195,228 Meta-analyses of ACAS and ACST data showed that patients with 80–99% ACS were not more likely to suffer late stroke than < 80% ACS patients (OR 0.9; 95% CI 0.6 – 1.2).62 The lack of a
relationship between stenosis severity and stroke risk was also reported in a meta-analysis of six RCTs and 35 observational studies, which observed that ipsilateral stroke rates were 1.9/100 person years (50–69% ACS) vs. 2.1/100 person years for 70–99% ACS \((p = .43)\). The 2017 ESVS guidelines concluded that increasing stenosis severity was not associated with increased stroke risk.\(^{165}\)

Since 2017, two meta-analyses have informed the debate. The first (five RCTs, 36 prospective observational cohort studies, and 15 retrospective cohort studies \([n = 13717]\)) reported that ipsilateral stroke in cohort studies (but not in RCTs) was highly correlated with increasing stenosis severity.\(^{62}\) It was hypothesised that the absence of increased stroke in 80–99% vs. < 80% ACS in the RCTs may have been a result of selection bias because trial investigators might have randomly assigned patients with severe stenosis whom they considered to be relatively low risk and enrolled patients with moderate ACS, whom they thought to be high risk.\(^{62}\) If ACAS and ACST-1 data are excluded, patients in cohort studies with 80–99% ACS were more likely to experience late ipsilateral stroke vs. patients with < 80% ACS (OR 2.5; 95% CI 1.5–2.7).\(^{62}\) However, six of the 11 cohort studies included ACAS patients with a history of contralateral stroke/TIA, which is known to increase stroke risk.\(^{62}\) Contralateral TIA/stroke was included in the 2017 ESVS guidelines as a higher risk of stroke on BMT criterion\(^{165}\) when considering performing CEA or CAS in ACS patients (section 3.6).

In OXVASC, where contralateral ACS was diagnosed in patients presenting with stroke/TIA, all strokes ipsilateral to the ACS occurred in the first two years after the contralateral stroke/TIA\(^{62}\) (rather than spread evenly over a five year period), suggesting a systemic vulnerability in this type of patient. When meta-analyses were restricted to the five cohort studies with no history of prior TIA/stroke, 80–99% ACS was still associated with higher rates of ipsilateral stroke compared with < 80% ACS (11.5% vs. 4.5%; OR 3.1, 95% CI 1.8 – 5.5).\(^{62}\) However, four of the five cohort studies completed recruitment in the 1980s/early 1990s, when BMT was not comparable with the modern era and there were only 218 patients with 80–99% ACS in the five cohort studies.\(^{62}\)

Table 7. Five and 10 year outcomes after treatment of asymptomatic carotid stenoses with carotid endarterectomy (CEA) or best medical therapy (BMT) in Veterans Affairs Carotid Study (VACS), Asymptomatic Carotid Atherosclerosis Study (ACAS), and Asymptomatic Carotid Surgery Trial (ACST-1)

<table>
<thead>
<tr>
<th>RCT (follow up time)</th>
<th>30 d D/S after CEA – %</th>
<th>Ipsilateral stroke including peri-op D/S*</th>
<th>Any stroke including peri-op D/S*</th>
<th>Stroke / 1 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>VACS (4 y)(^{259})</td>
<td>4.6</td>
<td>7.0</td>
<td>9.4</td>
<td>24 at 5 y</td>
</tr>
<tr>
<td>ACAS (5 y)(^{195})</td>
<td>2.3</td>
<td>5.1</td>
<td>11.0</td>
<td>17 at 59 y</td>
</tr>
<tr>
<td>ACST (5 y)(^{204})</td>
<td>2.8</td>
<td>No published data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACST (10 y)(^{184})</td>
<td>2.8</td>
<td>No published data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\text{RCT} = \text{randomised controlled trial; D/S} = \text{death/stroke; ARR} = \text{absolute risk reduction; NNT} = \text{number needed to treat to prevent one stroke; stroke / 1 000} = \text{number of strokes prevented per 1 000 CEs.}\)

In the second meta-analysis (64 non-randomised cohort studies \([n = 20751]\)), nine high risk features (HRFs) were defined in ACS patients.\(^{67}\) These included AHA plaque type IV–V (MRI diagnosed lipid or necrotic core surrounded by fibrous tissue with possible calcification\(^{262}\)); plaque type VI (MRI diagnosed complex plaque with surface defect, haemorrhage, or thrombus\(^{263}\)); plaque echolucency; large lipid rich necrotic core; silent brain infarction; thin/ruptured fibrous cap; plaque ulceration; intraplaque haemorrhage (IPH); impaired CVR and spontaneous micro-embolisation (MES) on TCD.\(^{67}\) Six of the nine HRFs were already high risk of stroke on BMT criteria in the 2017 guidelines.\(^{165}\) The incidence of ipsilateral stroke was higher with ACS plus at least one HRF vs. no HRFs \((OR 2.0; 95\% \text{ CI 1.5 – 2.7})\).\(^{67}\) HRFs increased late stroke/TIA as stenosis severity increased. In patients with 50–99% ACS, stroke/TIA was 4.3/100 patient years in patients with at least one HRF vs. 0.9/100 patient years with no HRFs \((OR 4.5; 95\% \text{ CI 1.8 – 10.9})\). In patients with 70–99% ACS, the risk of stroke/TIA increased to 7.3/100 patient years in patients with at least one HRF vs. 1.7/100 patient years in patients with no HRFs \((OR 3.2; 95\% \text{ CI 1.7 – 5.9})\).\(^{67}\)

The second meta-analysis suggests that increasing stenosis severity was an important predictor for late ipsilateral stroke/TIA, but only with concurrent HRFs.\(^{67}\) The impact of HRFs on late ipsilateral stroke was reported in more detail by the Asymptomatic Carotid Stenosis and Risk of Stroke (ACSRS) study, where annual stroke rates varied from 0.2% to 8.7% with 50–79% ACS and from 0.5% to 10% in patients with 80–99% ACS, dependent on whether patients did (or did not) have a history of contralateral TIA/stroke or had low vs. high carotid plaque area or had low vs. high plaque scores on computerised plaque analysis.\(^{263,264}\)

3.5. Controversy regarding modern medical therapy

ACAS, ACST-1, and VACS recruited between 1983 and 2003 when fewer patients took statins and a greater proportion smoked. Some now question whether the data remain relevant in the modern era.\(^{165}\) A meta-analysis (six RCTs, 35 prospective cohort studies \([n = 16178]\)) reported ipsilateral stroke rates of 2.3/100 person years in studies completing...
recruitment before 2000 vs. 1.0/100 person years for 2000 — 2010 (p < .001). The decline in stroke was attributed to BMT improvements and smoking cessation. In studies where fewer than 25% took statins, ipsilateral stroke was 1.2/100 person years vs. 2.3/100 person years where more than 25% took statins (p = .009). Another systematic review (three RCTs, 17 cohort studies) reported declining annual stroke rates in BMT patients occurring across all grades of ACS severity (50—99%, 60—99%, and 70—99%), which was also apparent in ACAS and ACST, where annual rates of stroke may have declined by 60% between 1995 and 2010.

3.6. Who is at high risk of stroke on medical therapy?

The 2021 SVS guidelines recommend CEA in “low surgical risk” patients with 70—99% ACS, while AHA guidelines advise that only highly selected patients should undergo CEA without defining what “highly selected” means. In the 2021 ESC guidelines, coronary calcium score or carotid plaque/stenosis were recognised as being important “risk modifiers”. ESC considered that the presence of ACS in people without clinical signs of cardiovascular disease, placed the patient in the same very high risk group as patients with CAD or PAD. The 2021 ESO guidelines advise that CEA is recommended in patients with > 60% ACS considered to be at increased risk of stroke on BMT alone, citing the higher risk criteria published in the 2017 ESVS guidelines to inform this aspect of the ESO guideline. The 2017 ESVS guidelines and the 2017 ESC/ESVS PAD guidelines were the first to propose clinical/imaging criteria for identifying a higher risk of stroke on BMT cohort in whom CEA or CAS might be targeted.

Table 8 summarises these criteria, which were based on meta-analyses, multicentre studies, and RCT subgroup analyses (but not single centre data). Criteria include silent infarction on CT/MRI, ≥ 20% stenosis progression, large plaque area or large juxtaluminal black area (JBA) on computerised ultrasound plaque analysis (defined as an area of pixels with a greyscale value < 25 adjacent to the lumen without a visible echogenic cap after image normalisation), plaque echolucency, IPH on MRI, impaired CVR (defined in section 3.10.1) and at least one spontaneous MES during ≥ 1 hour of transcranial Doppler (TCD) monitoring.

Corroboration of the ESVS criteria come from a 2020 meta-analysis of 64 cohort studies (n = 20 751), which evaluated stroke/TIA rates in ACS patients, stratified for whether they had HRFs or not. Six of the nine HRFs were already adopted in the 2017 ESVS higher risk of stroke on BMT criteria (Table 8). The pooled prevalence of HRFs was 26.5% (i.e., a minority of ACS patients). The evidence for including plaque morphology features (within the ESVS criteria) is detailed in Table 8 and is supported by a recent study comparing computer based analyses of plaque morphology using CT with plaque biological processes, including transcriptomic analyses. Symptomatic and asymptomatic patients with a large lipid rich necrotic core, IPH, plaque matrix and increased plaque burden had molecular signatures associated with inflammation and extracellular matrix degradation (usually associated with plaque instability and a higher risk of symptoms). By contrast, highly calcified plaques exhibited a molecular signature indicative of plaque stability with increased proliferative pathways and reduced inflammation.

The GWC considered the evidence from the two new meta-analyses (section 3.4.3) regarding whether 80—99% ACS should now be included as a higher risk of stroke on BMT criterion in the 2023 guidelines. After reviewing the evidence, the GWC decided (by a vote of 11:3) against including 80—99% ACS for four reasons. Firstly, most patients in the cohort studies had a prior history of contralateral TIA/stroke, which increases stroke rates in ACS patients, and which would already make them candidates for CEA/CAS. Secondly, even though there was statistical significance, four out of five cohort studies that included ACS patients without a history of stroke/TIA were published 25 — 35 years ago, raising questions about generalisability in the modern era of BMT. In addition, there were only 218 patients with 80—99% ACS in these five cohort studies with no prior stroke/TIA. Thirdly, the GWC felt it counterintuitive to simply dismiss RCT data (normally considered the highest level of evidence) on the basis there might have been selection biases 20 — 30 years ago (a hypothesis never raised before). There are many examples in carotid practice where RCT data appear discordant with observational studies (e.g., locoregional vs. general anaesthesia and eversion vs. conventional CEA). Finally, the Kamtchum-Tatuene meta-analysis and ACSRS demonstrated that increasing stenosis severity was an important predictor for late ipsilateral stroke, but only in the presence of concurrent HRFs. The decision not to include 80—99% ACS as a “high risk of stroke on BMT” criterion in the 2023 guidelines will be reconsidered following publication of CREST-2, which will provide contemporaneous data on whether > 80% ACS is associated with higher stroke risks in the context of modern BMT.

The 2021 German-Austrian guidelines have adopted the ESVS “high risk of stroke on BMT” criteria, with the addition of males aged < 75 years, based on five year ACST-1 data which showed no major benefit for CEA in women. However, because the ARR in 10 year stroke conferred by CEA in males < 75 years in ACST-1 (5.5%; 95% CI 0.9 — 10) was very similar to that of females (ARR 5.8%; 95% CI 1.1 — 11.4), the ESVS GWC decided against including males aged < 75 years as a “high risk of stroke on BMT” criterion.

3.7. Duplex surveillance in asymptomatic patients

In patients with a 50—60% ACS who would consider a future CEA or CAS (if indicated), it is reasonable to offer annual DUS surveillance (plus assessment of plaque lucency, MES, etc.) as this allows monitoring of risk factors and BMT. Patients progressing to a 60—99% stenosis and who have at least one clinical or imaging feature making them higher risk of stroke on BMT, might then be considered for CEA or CAS.
The 2021 German-Austrian guidelines give similar advice. There is no consensus about how long surveillance should continue, but the patient’s wishes should be considered. If a patient would not consent to any future carotid intervention, surveillance is not indicated, but the patient should be advised to seek urgent medical advice if symptoms occur.

3.8. Randomised trials: endarterectomy versus stenting

3.8.1. Thirty day outcomes in average risk patients. Table 9 details 30 day outcomes in meta-analyses of six RCTs comparing CEA vs. CAS in 7 030 ACS patients (excluding carotid angioplasty [CA]). CAS (mostly TFCAS) incurred higher rates of 30 day any stroke and death/any stroke.

3.8.2. Long term outcomes in average risk of surgery patients. Table 11 details rates of late ipsilateral and any stroke (excluding 30 day stroke/death), showing that late stroke rates after CAS were similar to CEA, that is, CAS was as durable as CEA.
High risk criteria were

Thirty day outcomes in six randomised controlled trials (RCTs) comparing carotid artery stenting (CAS) with carotid endarterectomy (CEA) in patients with asymptomatic carotid stenosis

<table>
<thead>
<tr>
<th></th>
<th>Death</th>
<th>Stroke</th>
<th>Death / stroke</th>
<th>Disabling stroke</th>
<th>Death / disabling stroke</th>
<th>MI</th>
<th>Death / stroke / MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCTs / patients</td>
<td>3 / 5 313</td>
<td>6 / 7 030</td>
<td>6 / 7 030</td>
<td>3 / 6 257</td>
<td>2 / 5 076</td>
<td>3 / 6 257</td>
<td>4 / 6 393</td>
</tr>
<tr>
<td>RCTs included</td>
<td>ACT-1, SAPPHIRE, ACST-2</td>
<td>CREST-1, ACT-1, Mannheim, SPACE-2, SAPPHIRE, ACST-2</td>
<td>CREST-1, ACT-1, Mannheim, SPACE-2, SAPPHIRE, ACST-2</td>
<td>CREST-1, ACT-1, ACST-2</td>
<td>ACT-1, ACST-2</td>
<td>CREST-1, ACT-1, Mannheim, ACST-2</td>
<td>CREST-1, ACT-1, ACST-2</td>
</tr>
<tr>
<td>CAS – n (%)</td>
<td>5 / 3 017 (0.16)</td>
<td>119 / 3 876 (3.03)</td>
<td>123 / 3 876 (3.17)</td>
<td>21 / 3 494 (0.64)</td>
<td>21 / 2 900 (0.72)</td>
<td>17 / 3 494 (0.49)</td>
<td>125 / 3 562 (3.53)</td>
</tr>
<tr>
<td>CEA – n (%)</td>
<td>8 / 2 928 (0.35)</td>
<td>63 / 3 156 (2.00)</td>
<td>71 / 3 156 (2.24)</td>
<td>15 / 2 765 (0.54)</td>
<td>20 / 2 178 (0.92)</td>
<td>28 / 2 765 (1.01)</td>
<td>86 / 2 833 (3.03)</td>
</tr>
<tr>
<td>OR (95% CI)</td>
<td>0.53 (0.17—1.65)</td>
<td>1.61 (1.18—2.21)</td>
<td>1.47 (1.09—1.99)</td>
<td>1.19 (0.61—2.35)</td>
<td>0.86 (0.46—1.61)</td>
<td>0.49 (0.26—0.90)</td>
<td>1.19 (0.89—1.59)</td>
</tr>
<tr>
<td>p value</td>
<td>.27</td>
<td>.003</td>
<td>.001</td>
<td>.61</td>
<td>.63</td>
<td>.024</td>
<td>.25</td>
</tr>
</tbody>
</table>

Red shade: significant benefit favouring CEA; green shade: significant benefit favouring CAS. MI = myocardial infarction; OR = odds ratio; CI = confidence interval.

* Reproduced with permission from Saratzis.94

An algorithm for managing average risk ACS and SCS patients is presented in Figure 2.

3.8.3. High risk for carotid endarterectomy patients. SAPPHIRE (Stenting and Angioplasty with Protection in Patients at High Risk for Endarterectomy) randomised 334 high risk for CEA patients to CEA vs. CAS.282 High risk criteria were 70–99% ACS plus at least one of: significant cardiac disease (congestive cardiac failure [CCF], abnormal stress test, awaiting cardiac surgery); severe pulmonary disease; contralateral occlusion; contralateral recurrent laryngeal nerve (RLN) palsy; prior radical neck surgery, cervical irradiation; re-stenosis after CEA; and age > 80 years.282 The majority (70%) were asymptomatic, in whom 30 day death/stroke was 5.8% (CAS) vs. 6.1% (CEA).282 At these levels of risk, most would gain no benefit (regarding late stroke prevention), suggesting they would be better treated medically.

3.9. Should the 3% risk threshold for carotid interventions be modified?

Guidelines since 1998 advise that CEA should be performed with a 30 day stroke/death rate < 3%,2,83 and that this should be independently audited (section 2.6). However, there is debate about whether the 3% threshold should be reduced. The 2021 German-Austrian and ESO guidelines advise that in hospital death/stroke should be ≤ 2%.2,3 However, this does not mean that the 30 day 3% threshold is being reduced. It is

Table 10. Thirty day outcomes in four randomised controlled trials (RCTs) comparing carotid artery stenting (CAS) with carotid endarterectomy (CEA), which randomised >500 patients with asymptomatic carotid stenosis

<table>
<thead>
<tr>
<th></th>
<th>Death</th>
<th>Stroke</th>
<th>Death / stroke</th>
<th>Disabling stroke</th>
<th>Death / disabling stroke</th>
<th>MI</th>
<th>Death / stroke / MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCTs / patients</td>
<td>2 / 5 078</td>
<td>4 / 6 659</td>
<td>4 / 6 659</td>
<td>3 / 6 259</td>
<td>2 / 5 078</td>
<td>3 / 6 259</td>
<td>3 / 6 259</td>
</tr>
<tr>
<td>RCTs included</td>
<td>ACT-1, ACST-2</td>
<td>ACT-1, ACST-2</td>
<td>CREST-1, ACT-1, ACST-2</td>
<td>CREST-1, ACT-1, ACST-2</td>
<td>ACT-1, ACST-2</td>
<td>CREST-1, ACT-1, ACST-2</td>
<td>CREST-1, ACST-2</td>
</tr>
<tr>
<td>CAS – n (%)</td>
<td>3 / 2 900 (0.10)</td>
<td>111 / 3 691 (3.00)</td>
<td>114 / 3 691 (3.08)</td>
<td>21 / 3 494 (0.60)</td>
<td>21 / 2 900 (0.72)</td>
<td>17 / 3 494 (0.49)</td>
<td>123 / 3 494 (3.52)</td>
</tr>
<tr>
<td>CEA – n (%)</td>
<td>7 / 2 178 (0.32)</td>
<td>58 / 2 968 (1.95)</td>
<td>65 / 2 968 (2.19)</td>
<td>15 / 2 765 (0.54)</td>
<td>20 / 2 178 (0.92)</td>
<td>28 / 2 765 (1.01)</td>
<td>85 / 2 765 (3.07)</td>
</tr>
<tr>
<td>OR (95% CI)</td>
<td>0.33 (0.08—1.34)</td>
<td>1.61 (1.16—2.23)</td>
<td>1.47 (1.07—2.01)</td>
<td>1.19 (0.61—2.36)</td>
<td>0.86 (0.42—1.66)</td>
<td>0.49 (0.26—0.91)</td>
<td>1.18 (0.89—1.58)</td>
</tr>
<tr>
<td>p value</td>
<td>.12</td>
<td>.005</td>
<td>.017</td>
<td>.60</td>
<td>.63</td>
<td>.023</td>
<td>.25</td>
</tr>
</tbody>
</table>

Red shade: significant benefit favouring CEA; green shade: significant benefit favouring CAS. MI = myocardial infarction; OR = odds ratio; CI = confidence interval.

* Reproduced with permission from Saratzis.94
more an attempt to define acceptable risk thresholds while the patient remains in hospital (i.e., easier to audit). RCTs suggest that 19–24% of peri-operative strokes and deaths occur after the eighth post-operative day, which effectively means that the 3% 30 day death/stroke threshold continues to be retained by these two guidelines. Given the apparent reduction in stroke on modern BMT, plus a meta-analysis of six RCTs and 47 community registries ($n = 259,053$) reporting that by 2013, 30 day death/stroke after CEA in ACS patients had fallen to 1.2%, the GWC debated whether the 30 day 3% threshold should be reduced. After reviewing the evidence, the GWC concluded that it would not be appropriate to do so at present. This was based on recognition that some authors do not accept that the risk of stroke on BMT has decreased, while meta-analyses of four large RCTs comparing CEA with CAS ($n = 6,659$) showed that the 30 day death/stroke rate was 2.19% (CEA) vs. 3.08% (CAS), which differs from meta-analyses suggesting a decline in risks to < 2%. CREST-2 is currently randomising ACS patients to CEA or CAS, and this debate will not be resolved until it reports whether there has been a decline in stroke rates on modern BMT, compared with when ACAS/ACST were recruiting.

Table 11. Late “ipsilateral” and “any” stroke after carotid endarterectomy (CEA) and carotid artery stenting (CAS) excluding 30 day outcomes

<table>
<thead>
<tr>
<th>Trial</th>
<th>Follow up time</th>
<th>Ipsilateral stroke (average per annum) – %</th>
<th>Any stroke (average per annum) – %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CAS</td>
<td>CEA</td>
</tr>
<tr>
<td>Lexington &204</td>
<td>4 y</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Mannheim 222</td>
<td>26 mo</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>ACT-1 &226</td>
<td>5 y</td>
<td>2.5 (0.50)</td>
<td>2.7 (0.54)</td>
</tr>
<tr>
<td>CREST-1 & 227,280</td>
<td>5 y</td>
<td>6.9 (0.69)</td>
<td>5.6 (0.56)</td>
</tr>
<tr>
<td>CREST-2 & 227,280</td>
<td>10 y</td>
<td>2.1 (0.42)</td>
<td>1.0 (0.20)</td>
</tr>
</tbody>
</table>

Figure 2. Management of “average risk” patients with asymptomatic and symptomatic carotid stenoses with best medical therapy (BMT), carotid endarterectomy (CEA), and/or carotid artery stenting (CAS). See Table 8 for imaging/clinical criteria conferring an increased risk of stroke on BMT in ACS patients.
In 20% of dementia patients, athero-

Finally, patients with severe ACS and impaired CVR

How-

Surprisingly few studies
details the

Gurm

Mannheim

but there was no further scrutiny

trillion) by 2030.

Five per cent of patients aged

3.10. Carotid revascularisation and cognitive impairment

Five per cent of patients aged >60 have dementia. Globally, the annual cost of treating dementia exceeds $US1 trillion (€ 816 billion) and may reach $US2 trillion (€ 1.6 trillion) by 2030.287 In 20% of dementia patients, atherosclerosis or other occlusive diseases affecting cerebral ves-
sels is responsible (vascular dementia), while 20–30% have vascular dementia and Alzheimer’s.

3.10.1. Do asymptomatic carotid stenoses cause cognitive impairment? There is speculation that ACS may be responsible for cognitive decline. In a 2013 systematic review, nine out of 10 observational studies reported an association between ACS and cognitive impairment,50 but there was no further scrutiny as to whether this translated into a causal association. In a larger systematic review (35 observational studies; 3 626 ACS patients, 10 936 controls), 33/35 studies (94%) reported an association between ACS and cognitive impairment.87 However, such association does not necessarily mean ACS has an aetiological role versus being a marker for something else. The systematic review examined the evidence and was unable to unequivocally demonstrate that ACS was causally associated with cognitive dysfunction via involvement in the pathophysiology of white matter hyperintensities on MRI, lacunar infarct-
or via an embolic mechanism.89 Surprisingly few studies have evaluated the relationship between ACS, ipsilateral cortical infarction, and cognitive impairment. An alternative mechanism whereby ACS might cause cognitive impairment is haemodynamic. As the ACS becomes more severe, patients with a non-functioning CoW and poor collateralisation compensate by vasodilatation of ipsilateral intracranial arterioles. This maintains cerebral blood flow, but a point arises where arterioles cannot dilate further. The patient then enters a state of impaired then exhausted cerebral vascular reserve (CVR) with limited (or no) capacity to vasodilate further and blood flow then starts to decline. CVR can be measured using single photon emission tomography, positron emission tomography, or TCD monitoring of ipsilateral mean middle cerebral artery (MCA) velocities during CO₂ inhalation or breath holding (which raises blood CO₂ levels), which causes vasodilatation and increased MCA velocities, but only if CVR is not exhausted.

Ten studies have evaluated the relationship between impaired CVR and cognitive impairment, with 90% reporting at least one test of impaired cognition.87 There was a stepwise increase in severity of cognitive impairment from normal in patients with severe ACS plus normal CVR (bilaterally), through unilateral impaired CVR (increased cognitive impairment), with maximum cognitive dysfunction in patients with bilateral impaired CVR.288 Patients with severe ACS (unilateral or bilat-
eral) and normal CVR had cognitive scores similar to controls.289,290 Finally, patients with severe ACS and impaired CVR were more likely to suffer further cognitive decline over time versus patients with severe ACS and normal CVR.289,291–293

3.10.2. Do carotid interventions improve cognition func-
tion? A second systematic review (31 observational studies) evaluated the effect of carotid interventions on early and late post-operative cognition in ACS patients.46 Assessment of early cognitive function was defined as re-assessment within three months after CEA or CAS (vs. baseline). Assessment of late cognitive function involved assessment at least five months after CEA or CAS. In 13/21 cohorts, late reassessment was at least one year after baseline.46 Table 12 details the effect of carotid interventions on early post-operative cognition in 24 patient cohorts (11 CEA; 10 CAS; 3 CEA + CAS), and late cognitive function in 21 patient cohorts (12 CEA; 7 CAS; 2 CEA + CAS).46

At late follow up (Table 12), 69% reported no major change in cognitive function, while in 25%, cognitive scores were mostly unchanged, but one to two individual tests were substantially improved. Few patients had substantial improvement in late cognitive function (one cohort; 1.5% of study population) and only one cohort (1.8% of the overall study population) had substantial late cognitive impairment.

Only one study has evaluated whether haemodynamic status influenced post-operative cognitive function in three groups of ACS patients. Patients with 80–99% ACS plus normal CVR undergoing CAS had no change in post-operative cognition. Controls with 80–99% ACS plus impaired CVR who did not undergo CAS had no change in cognition at follow up assessment. However, patients with 80–99% ACS plus impaired CVR who underwent CAS showed improvements across all cognitive domains after CAS.

Not included in the systematic review was a post hoc analysis of 1 601 UK and Swedish patients, randomised within ACST-1. Using trial data, electronic health records and (in the UK) telephone and postal review, there was no difference in 10 year rates of recorded dementia between CEA and BMT patients (6.7% vs. 6.6%) or in 20 year rates (14.3% vs. 15.5%), that is, CEA was not associated with reductions in late dementia versus BMT (HR 0.98; 95% CI 0.75 – 1.28, p = .89).

Until new research clearly identifies at risk ACS subgroups for developing cognitive impairment which is then improved by carotid interventions or provides direct evidence that silent embolisation from ACS causes cognitive impairment, indications for CEA and CAS in ACS patients (to prevent or reverse cognitive decline) are lacking. Impaired CVR is a criterion for being higher risk of stroke on BMT, in ACS patients in whom CEA or CAS may be considered. CVR is a criterion for being higher risk of stroke on BMT, in ACS patients in whom CEA or CAS may be considered. CVR is a criterion for being higher risk of stroke on BMT, in ACS patients in whom CEA or CAS may be considered. CVR is a criterion for being higher risk of stroke on BMT, in ACS patients in whom CEA or CAS may be considered. CVR is a criterion for being higher risk of stroke on BMT, in ACS patients in whom CEA or CAS may be considered.

Recommendation 22 Unchanged

For patients with a 70–99% asymptomatic carotid stenosis, carotid interventions are not recommended for the prevention of cognitive impairment until a causal association between severe asymptomatic carotid stenoses and cognitive decline has been established.

4. MANAGEMENT OF SYMPTOMATIC CAROTID DISEASE

4.1. Symptoms attributable to carotid and vertebral artery disease

Being classed as recently symptomatic includes patients with symptoms in the past six months, which was the inclusion criterion in ECST/NASCET (Table 13). Most TIAs/stroke symptoms are negative (e.g., loss/impairment of power, sensation, coordination) versus positive (e.g., paraesthesia). Occasional patients with carotid embolism can develop ischaemia or infarction in the posterior cerebral artery (PCA) territory, due to a persisting foetal PCA origin from the ICA via the posterior communicating artery. The severity of symptoms can be scored using the modified Rankin Score (mRS) or National Institutes of Health Stroke Score (NIHSS).

The term “non-hemispheric symptoms” is applied to patients with isolated syncope (blackout, drop attack), pre-syncpe (faintness), isolated dizziness, isolated double vision (diplopia), tinnitus, and isolated vertigo. There is no evidence that patients with non-hemispheric symptoms benefit from carotid (or vertebral) interventions, unless they co-exist with the more focal symptoms listed in Table 13.

4.2. Optimal medical therapy

Most secondary prevention RCTs (APRx, hypertension, lipid lowering, DM) did not specifically recruit SCS patients, focussing primarily on the prevention of stroke in general. Some did publish subgroup analyses in SCS patients, and these have been highlighted.

4.2.1. Lifestyle measures

Management of risk factors and lifestyle is the same as for ACS (section 3.1.1).

4.2.2. Antiplatelet therapy

4.2.2.1. Monotherapy

No adequately powered RCTs have evaluated monotherapy versus combination APRx in SCS patients. However, older RCTs suggest aspirin monotherapy should be started urgently in APRx alone to ischaemic stroke patients, to reduce recurrent ischaemic stroke, death, or dependency. If monotherapy is adopted, 300 mg aspirin may be prescribed for days 1 – 14 to maximally inhibit thromboxane biosynthesis, followed by 75 – 325 mg daily.
TABLE 13. Carotid and vertebrobasilar territory symptoms

<table>
<thead>
<tr>
<th>Carotid territory symptoms</th>
<th>Vertebrobasilar territory symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher cortical dysfunction (aphasia, dysgraphia, apraxia, visuospatial problems, visual field deficits)</td>
<td>Complete visual loss blurring, hemianopia</td>
</tr>
<tr>
<td>Amaurosis fugax / transient monocular blindness blurring</td>
<td>Diplopia, ptosis</td>
</tr>
<tr>
<td>Chronic ocular ischaemia syndrome</td>
<td>Vertigo; usually with other brain stem symptoms</td>
</tr>
<tr>
<td>Weakness and/or sensory impairment of face/arm/leg (one or all areas may be affected)</td>
<td>Acute sensorineural hearing loss</td>
</tr>
<tr>
<td>Upper/lower limb clumsiness</td>
<td>Dysarthria (also occurs with carotid territory ischaemia)</td>
</tr>
<tr>
<td>“Limb-shaking TIAs” (haemodynamic events in patients with severe SCS and exhausted CVR)</td>
<td>Dysphagia (also occurs with carotid territory ischaemia)</td>
</tr>
<tr>
<td></td>
<td>Dysphonia</td>
</tr>
<tr>
<td></td>
<td>Bilateral facial or limb weakness/numbness</td>
</tr>
<tr>
<td></td>
<td>Ataxia</td>
</tr>
</tbody>
</table>

TIA = transient ischaemic attack; SCS = symptomatic carotid stenosis; CVR = cerebral vascular reserve.

4.2.2.2. Combination. There is increasing interest in the role of combination or dual antiplatelet therapy (DAPT), over monotherapy, to optimise protection against recurrent vascular events in patients with TIA or ischaemic stroke, including those with SCS. Table 14 summarises data from three RCTs evaluating aspirin + dipyridamole, which randomised patients < 24 hours to six months after TIA/ischaemic stroke to aspirin + dipyridamole versus aspirin monotherapy or placebo.\(^{301–303}\) Aspirin + dipyridamole was more effective than aspirin monotherapy in preventing recurrent stroke,\(^{301}\) or recurrent ischaemic vascular events in patients with TIA or ischaemic stroke\(^{302}\) and can be safely started < 24 hours after symptom onset.\(^{303}\) Long term aspirin + dipyridamole has not been shown to be superior to clopidogrel monotherapy in patients with ischaemic stroke or neuro-imaging confirmed TIAs, although 28.3–28.8% of patients had symptoms attributed to “large artery atherosclerosis”, the precise proportion with symptomatic extracranial ICA stenosis was not specified, and those scheduled for urgent CEA were excluded.\(^{304}\) Table 15 details studies evaluating aspirin + clopidogrel on rates of spontaneous MES in SCS patients, which is an

Table 14. Main findings of three randomised controlled trials (RCTs) comparing aspirin plus dipyridamole antiplatelet therapy with aspirin monotherapy after transient ischaemic attack or ischaemic stroke

<table>
<thead>
<tr>
<th>RCT</th>
<th>Patients (% with SCS) - n</th>
<th>Cohort</th>
<th>Combination antiplatelet strategy</th>
<th>Main findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPS-2*</td>
<td>6 602 (not clear)</td>
<td>TIA / ischaemic stroke <3 mo</td>
<td>Dipyridamole 200 mg twice daily vs. aspirin 25 mg twice daily vs. aspirin 25 mg plus dipyridamole 200 mg twice daily vs. placebo</td>
<td>RRR in stroke at 2 y: Dipyridamole vs. placebo: 16%, (p < .050) Aspirin vs. placebo: 18%, (p < .050) Aspirin and dipyridamole vs. placebo: 37%, (p < .050) Aspirin and dipyridamole vs. dipyridamole: 25%, (p < .050) Aspirin and dipyridamole vs. aspirin: 23%, (p < .050)</td>
</tr>
<tr>
<td>ESPRIT(^{302})</td>
<td>2 739 (9–11% with >50% SCS)</td>
<td>TIA / ischaemic stroke <6 mo</td>
<td>Aspirin 30–325 mg daily vs. aspirin 30–325 mg daily plus dipyridamole 200 mg twice daily</td>
<td>Non-fatal stroke / MI / major bleed / vascular death at 3 y: Aspirin and dipyridamole vs. aspirin (HR 0.80, 95% CI 0.66–0.98) Non-fatal stroke or MI / vascular death at 3 y: Aspirin and dipyridamole vs. aspirin (HR 0.78, 95% CI 0.63–0.97)</td>
</tr>
<tr>
<td>EARLY(^{303})</td>
<td>543 (not clear)</td>
<td>Ischaemic stroke <24 h, NIHSS ≤20, not for thrombolysis</td>
<td>Aspirin 25 mg plus dipyridamole 200 mg MR twice daily days 1–90 (“Early”) vs. aspirin 100 mg daily days 1–7, then aspirin 25 mg plus dipyridamole 200 mg MR twice daily days 8–90 (“Late”)</td>
<td>Good functional outcome (mRS 0–1) at 90 d: Early vs. Late treatment (56.4 vs. 52.4%, (p = .45)) Non-fatal stroke / TIA / non-fatal MI / non-fatal major bleeding complication / vascular death: Early vs. Late treatment: 10 vs. 15% (HR 0.73, 95% CI 0.44–1.19; (p = .20))</td>
</tr>
</tbody>
</table>

MR = modified release; RRR = relative risk reduction; MI = myocardial infarction; SCS = symptomatic carotid stenosis; mRS = modified Rankin Score.
Table 15. Effect of combination aspirin plus clopidogrel in reducing spontaneous embolisation in recently symptomatic patients with carotid stenosis (SCS) and in patients undergoing carotid endarterectomy (CEA)

<table>
<thead>
<tr>
<th>Author or trial</th>
<th>Study type, patients – n</th>
<th>Cohort</th>
<th>Combination antiplatelet strategy</th>
<th>Principle findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payne(^{306})</td>
<td>RCT, 100</td>
<td>≥50% SCS or ≥70% ACS</td>
<td>Aspirin 150 mg daily for 4 w pre-op plus placebo vs. aspirin 150 mg daily for 4 w pre-op plus single 75 mg dose of clopidogrel 12 h pre-op</td>
<td>During 3 h of post-op TCD monitoring, aspirin plus clopidogrel was associated with a tenfold reduction in the proportion of patients with ≥20 emboli detected: (OR 0.1, 95% CI 0.01–0.80; p = .010)</td>
</tr>
<tr>
<td>CARESS(^{306})</td>
<td>RCT, 107</td>
<td>>50% SCS + ≥1 MES on TCD at baseline</td>
<td>Aspirin 75 mg daily plus clopidogrel 300 mg on day 1, followed by 75 mg clopidogrel daily until day 7 vs. aspirin 75 mg daily</td>
<td>At 7 d, aspirin plus clopidogrel was associated with a significant reduction in the proportion of patients with persistent embolisation on TCD: (43.8% vs. 72.7%; RRR 39.8%, 95% CI 13.8–58; p = .005)</td>
</tr>
<tr>
<td>AMBDAP(^{307})</td>
<td>RCT, 60</td>
<td>50% SCS</td>
<td>Aspirin 300 mg, then 75 mg daily plus dipyridamole 200 mg twice daily for 30 d vs. aspirin 300 mg, then 75 mg daily plus clopidogrel 300 mg, then 75 mg daily for 30 d</td>
<td>At 48 h, there was a similar reduction in the frequency of microembolisation for: Aspirin plus dipyridamole (75.5%) Aspirin plus clopidogrel (77.5%, p = .77)</td>
</tr>
<tr>
<td>Batchelder(^{308})</td>
<td>Obs., 100</td>
<td>SCS patients undergoing CEA <8 d of symptom onset</td>
<td>Aspirin 300 mg, then 75 mg daily plus 75 mg clopidogrel 12 h pre-op vs. aspirin 300 mg, then 75 mg daily plus 75 mg clopidogrel daily for 48–72 h pre-op</td>
<td>Starting aspirin plus clopidogrel 48–72 h pre-op was associated with significant reductions in: Recurrent TIA/stroke prior to CEA (3% vs. 13%) (OR 0.20, 95% CI 0.06–0.66; p = .010) and Spontaneous embolisation pre-op (5% vs. 21%) (OR 0.2, 95% CI 0.09–0.66; p = .005)</td>
</tr>
</tbody>
</table>

RCT = randomised controlled trial; Obs. = observational; TIA = transient ischaemic attack; SCS = symptomatic carotid stenosis; ACS = asymptomatic carotid stenosis; RRR = relative risk reduction; OR = odds ratio; CI = confidence interval.

important predictor of increased stroke risk.\(^{309}\) The CARESS RCT reported reductions in ongoing micro-embolisation in patients with >50% SCS who were MES positive at baseline randomised to seven days of aspirin + clopidogrel versus aspirin alone.\(^{306}\) However, it was not powered to show differences in clinical outcome. The AMBDAP study revealed similar reductions in embolisation on aspirin + dipyridamole versus aspirin + clopidogrel in patients with >50% SCS.\(^{307}\) In a prospective audit, starting aspirin + clopidogrel in a rapid access TIA clinic after ICH was excluded on CT/MRI was associated with a reduction in recurrent TIA/stroke before expedited CEA, plus reductions in MES.\(^{308}\) Sustained embolisation in the early time period after CEA is a predictor of post-operative thromboembolic stroke.\(^{309}\) One study randomised 100 CECA patients established on 150 mg aspirin daily (84% SCS), to a single dose of 75 mg clopidogrel (n = 46) or placebo (n = 54) 12 hours before CECA.\(^{310}\) In comparison with placebo, clopidogrel statistically significantly reduced the odds of having ≥20 emboli on TCD in the first three post-operative hours (p = .010).

It is now accepted that the highest risk period for recurrent stroke is the first 7–14 days after symptom onset (section 4.5.1). Three RCTs have evaluated whether early institution of aspirin + clopidogrel (within 24 hours of symptom onset) reduces the risk of early recurrent stroke versus aspirin alone.\(^{25,311,312}\) A fourth RCT undertook a similar evaluation of aspirin + ticagrelor versus aspirin.\(^{34}\) The methodology and results are summarised in Table 16. CHANCE, POINT, and THALES excluded SCS patients in whom urgent CEA/CAS was planned.

A meta-analysis of the three RCTs comparing aspirin + clopidogrel versus aspirin alone showed that starting aspirin + clopidogrel within 24 hours of the onset of a high risk TIA or minor stroke reduced (i) non-fatal recurrent ischaemic or haemorrhagic stroke at 90 days (ARR 1.9%; RR 0.70, 95% CI 0.61–0.80); (ii) non-fatal ischaemic stroke (ARR 2%; RR 0.69, 95% CI 0.60–0.79); (iii) moderate to severe functional disability (ARR 1.4%); and (iv) poor quality of life (ARR 1.3%). Combination APRx had no impact on all cause mortality or MI, but there was a small, but important increase in moderate to major extracranial bleeding (absolute risk increase [ARI] 0.2%; RR 1.71, 95% CI 0.92–3.2).\(^{29}\)

Although the risk of bleeding complications increased slowly over the first 90 days of combination APRx treatment, early recurrent stroke was highest in the first 10–21 days.\(^{25,29}\) Accordingly, limiting combination APRx to 21 days after symptom onset would reduce early recurrent stroke, while minimising major bleeding complications.\(^{39}\)

4.2.2.3. Prior to carotid artery stenting. Patients with 50–99% SCS undergoing CAS are routinely prescribed...
Table 16. Randomised controlled trials (RCTs) evaluating the effect of aspirin plus clopidogrel or aspirin plus ticagrelor, versus aspirin monotherapy, in preventing early recurrent stroke

<table>
<thead>
<tr>
<th>RCT</th>
<th>Patients - n</th>
<th>Cohort</th>
<th>Combination strategy</th>
<th>antiplatelet strategy</th>
<th>Main findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>FASTER</td>
<td>392</td>
<td>Acute minor ischaemic stroke or TIA with initiation of APRx <24 h of symptom onset†</td>
<td>All patients received aspirin 81 mg/d (162 mg × 1 dose if aspirin naïve) and were randomised to additional clopidogrel (300 mg × 1 dose and then 75 mg/d; clopidogrel plus simvastatin 40 mg/d; simvastatin 40 mg/d; or placebo)</td>
<td>Aspirin plus clopidogrel did not significantly reduce 90 d risk of stroke vs. aspirin monotherapy (5.1 vs. 9.5%; p = .010) Symptomatic bleeding higher in the clopidogrel vs. no clopidogrel groups (3 vs. 0%; p = .030)</td>
<td></td>
</tr>
<tr>
<td>CHANCE</td>
<td>5 170</td>
<td>Acute minor ischaemic stroke or “high risk” TIA patients in China, with initiation of APRx <24 h of symptom onset†</td>
<td>75–300 mg aspirin × 1 d, plus 75 mg aspirin × 21 d, plus clopidogrel 300 mg stat plus clopidogrel 75 mg/d days 2–90 vs. 75–300 mg aspirin × 1 d plus aspirin 75 mg/d days 2–90</td>
<td>Compared with aspirin, aspirin plus clopidogrel was associated with significant reductions in 90 d: Stroke (8.2 vs. 11.7%; HR 0.68, 95% CI 0.57–0.81; p < .001) Fatal/disabling stroke (5.2 vs. 6.8%; HR 0.75, 95% CI 0.6–0.94; p = .010) Ischaemic stroke (7.9 vs. 11.4%; HR 0.67, 95% CI 0.56–0.81; p < .001) Compared with aspirin, aspirin plus clopidogrel was associated with no significant difference in 90 d: Moderate or severe bleeding (0.3 vs. 0.3%; p = .73)</td>
<td></td>
</tr>
<tr>
<td>POINT</td>
<td>4 881</td>
<td>Acute minor ischaemic stroke or “high risk” TIA, with initiation of APRx <12 h of symptom onset†</td>
<td>Aspirin 50–325 mg/d plus clopidogrel 600 mg stat plus clopidogrel 75 mg/d days 2–90 vs. aspirin 50–325 mg/d × 90 d (162 mg aspirin/d for 5 d and then 81 mg/d recommended)</td>
<td>Compared with aspirin, aspirin plus clopidogrel was associated with significant reductions in 90 d: Stroke / MI / ischaemic vascular death (5 vs. 6.5%; HR 0.75, 95% CI 0.59–0.95; p = .020) Ischaemic stroke (4.6 vs. 6.3%; HR 0.72, 95% CI 0.56–0.92; p = .010) Compared with aspirin, aspirin plus clopidogrel was associated with significant increase in 90 d: Major bleeding (0.9 vs. 0.4%; HR 2.32, 95% CI 1.10–4.7; p = .020)</td>
<td></td>
</tr>
<tr>
<td>THALES</td>
<td>11 016</td>
<td>Acute minor ischaemic stroke or “high risk” TIA, with initiation of APRx <24 h of symptom onset†</td>
<td>Aspirin 300–325 mg stat and then 75–100 mg aspirin daily days 2–30 plus ticagrelor 180 mg stat + ticagrelor 90 mg twice daily days 2–30 vs. aspirin 300–325 mg stat and 75–100 mg aspirin daily days 2–30</td>
<td>Compared with aspirin, aspirin plus ticagrelor was associated with significant reductions in 30 d: Stroke / death (5.5 vs. 6.6%; HR 0.83, 95% CI 0.71–0.96; p = .020) Ischaemic stroke (5.0 vs. 6.3%; HR 0.79, 95% CI 0.68–0.93; p = .004) Compared with aspirin, aspirin plus ticagrelor was associated with significant increase in 30 d: Severe bleeding (0.5 vs. 0.1%; HR 3.9, 95% CI 1.74–9.14; p = .001)</td>
<td></td>
</tr>
</tbody>
</table>

TIA = transient ischaemic attack; APRx = antiplatelet therapy; RR = relative risk; HR = hazard ratio; CI = confidence interval; NIHSS = National Institute of Health Stroke Score.

† Trial stopped early because of slow enrolment.
† Acute minor ischaemic stroke (NIHSS score ≤3) or TIA.
† Acute minor ischaemic stroke (NIHSS score ≤3) or TIA with ABCD² score ≥4.
† Trial stopped early because data and safety monitoring board determined that the combination of clopidogrel and aspirin was associated with both a lower risk of major ischaemic events and a higher risk of major haemorrhage at 90 days.
† Acute minor ischaemic stroke (NIHSS score ≤3) or TIA with ABCD² score ≥6, or symptomatic intracranial or extracranial stenosis ≥50%.

combination APRx, based on two small RCTs (section 3.1.2.4). In most RCTs involving SCS patients, aspirin + clopidogrel¹³–¹³⁷ or aspirin + ticlopidine³¹⁴,³¹⁶ were prescribed for 48 hours to 72 hours³¹⁴,³¹⁷ before CAS and for at least four to six weeks thereafter.³¹⁴,³¹⁶,³¹⁷ Ticlopidine is no longer prescribed, so aspirin + clopidogrel is preferred. It is reasonable to prescribe 300 – 325 mg aspirin daily for 14 days, followed by 75 – 81 mg daily (if aspirin naïve), in combination with clopidogrel in CAS patients. Clopidogrel (75 mg daily) should start three days before CAS, to inhibit ADP induced platelet aggregation, or as a 300 mg loading dose in urgent cases. Aspirin + clopidogrel should continue for at least four weeks, after which patients should revert to monotherapy (usually clopidogrel 75 mg daily³¹⁸), to protect against late cardiovascular events.³¹⁷,³¹⁸ Long term aspirin + clopidogrel is not recommended, unless for other clinical indications, as the increased bleeding risk is not justified over the benefits conferred by APRx monotherapy.
in TIA/stroke patients.59,219,10,220 There are no large RCTs on aspirin + ticagrelor versus aspirin monotherapy in CAS patients with a $\geq 50\%$ SCS.

4.2.2.4. Prior to carotid endarterectomy. No RCT has compared APRx monotherapy with combination therapy in CEA patients. However, international guidelines increasingly recommend a 21 day course of aspirin + clopidogrel in patients with minor ischaemic stroke or high risk TIA, starting as soon as possible after symptom onset once ICH has been excluded on CT/MRI, to prevent early recurrent stroke.1,212–214 Although CHANCE, POINT, and THALES excluded SCS patients in whom CEA was planned, any patients with a TIA or minor ischaemic stroke and a 50–99\% stenosis who are deemed to require CEA by the MDT should otherwise also be considered high risk.

4.2.2.4.1. Monotherapy

Aspirin: Only one RCT has evaluated aspirin versus placebo in CEA patients. Two hundred and thirty two patients (215 SCS) were randomised to placebo or aspirin 75 mg daily, starting the night before CEA and continuing for six months.125 Aspirin reduced disabling stroke at seven days versus placebo (1.7\% vs. 9.6\%; $p = .010$), but there was no difference in recurrent TIA/stroke/death at six months. The ACE trial (section 3.1.2.3) showed that lower dose aspirin (81 – 325 mg) was preferable to higher dose (> 650 mg) in CEA patients.219 Historically, surgeons have almost exclusively used aspirin monotherapy prior to CEA, although benefits may not be as good as combination APRx for preventing early recurrent stroke after symptom onset and before CEA (section 3.1.2.2).

Clopidogrel: No RCTs have compared clopidogrel with placebo or aspirin in SCS patients undergoing CEA. CAPRIE showed that 75 mg clopidogrel daily reduced the relative risk of ischaemic stroke, MI, or vascular death by 8.7\% versus 325 mg aspirin daily in a vascular disease population ($p = .043$). However, the 7.3\% RR in the ischaemic stroke subgroup did not reach statistical significance.217 Moreover, no patients were included within one week of stroke onset and patients undergoing CEA were excluded. However, in a SCS patient who has had a TIA/stroke while on aspirin (or who is aspirin or dipyridamole intolerant), clopidogrel monotherapy (75 mg daily) is an alternative in the peri-operative period, if APRx monotherapy is preferred. In this situation, it is reasonable to prescribe a 300 mg loading dose followed by 75 mg clopidogrel daily to produce a more rapid and stable inhibitory effect than seen with 75 mg daily.218 Clopidogrel monotherapy was equally effective as aspirin + dipyridamole at preventing recurrent stroke at 2.5 years.304

Dipyridamole: If intolerant of, or allergic to both aspirin and clopidogrel, 200 mg of dipyridamole MR monotherapy twice daily is an alternative peri-operative regimen.81,218

Ticagrelor: Ticagrelor reversibly inhibits the platelet P2Y\textsubscript{12}, ADP receptor.214 A secondary analysis of the SOC-RATES trial compared outcomes on ticagrelor ($n = 1542$) versus aspirin ($n = 1539$) in patients randomised within 24 hours of a high risk TIA (ABCD2 ≥ 4) or ischaemic stroke (NIHSS ≤ 5) and who had $\geq 50\%$ ipsilateral stenosis of an extracranial or intracranial artery, mobile thrombus in the aortic arch, or aortic arch plaques ≥ 4mm thick.5 The risk of stroke, MI, or death at 90 days was statistically significantly lower in TIA/ischaemic stroke patients of atherosclerotic origin on ticagrelor versus aspirin (6.7\% vs. 9.6\%; HR 0.68, 95\% CI 0.53 – 0.88, $p = .003$).24 The number with extracranial $\geq 50\%$ SCS was not specified and there were too few events in CEA patients to draw conclusions regarding the benefits of ticagrelor over aspirin. However, in SCS patients intolerant or allergic to aspirin, clopidogrel, and dipyridamole (in whom CEA is not planned), ticagrelor monotherapy is an option (180 mg loading dose, then 90 mg twice daily).24

4.2.2.4.2. Combination therapy. Historically, surgeons have been reluctant to perform CEA in patients on aspirin + clopidogrel, because of concerns about peri-operative bleeding complications. However, evidence suggests that attitudes may be changing. In 2007, an audit of UK vascular surgeons reported that if patients were taking aspirin + clopidogrel, 52\% would discontinue clopidogrel before CEA.327 By 2012, only 24\% would discontinue clopidogrel.115,118,159 In a SVS vascular quality initiative (VQI) between 2003 and 2014 ($n = 2863$), 25\% of CEA patients were on aspirin + clopidogrel137, increasing to 31\% between 2010 and 2018 ($n = 100432$).150 In a recent Danish multicentre audit ($n = 1125$), the proportion of SCS patients undergoing CEA on aspirin + clopidogrel was 50%.134

The increase in the proportion of CEA patients prescribed aspirin + clopidogrel in the peri-operative period occurred before publication of CHANCE, POINT, and THALES. However, international guidelines have now changed clinical practice in high risk patients with TIA/minor ischaemic stroke without carotid stenosis, with aspirin + clopidogrel increasingly being recommended in the early time period after onset of symptoms (section 4.2.2.2). In THALES, a subgroup analysis of 2351 patients with $\geq 30\%$ stenosis of an ipsilateral extracranial or intracranial brain supplying artery, which might have accounted for their TIA/stroke (excluding those scheduled for urgent CEA with more severe stenoses), revealed that patients randomised to aspirin + ticagrelor had statistically significantly lower risks of stroke/death at 30 days (8.1\% vs. 10.9\%) with aspirin alone (HR 0.73; 95\% CI 0.56 – 0.96, $p = .023$).6 In the other 8665 THALES patients without atherosclerotic stenosis, the 90 day risk of stroke/death was similar with aspirin + ticagrelor versus aspirin alone (4.8\% vs. 5.4\%; HR 0.89; 95\% CI 0.74 – 1.08, $p = .23$).7 In addition, the risk of stroke/death was not statistically significantly different between those randomised to aspirin + ticagrelor vs. aspirin in the subgroup with $\geq 30\%$ extracranial arterial stenosis (7.6\% vs. 8.9\%; HR 0.84, 95\% CI 0.6 – 1.17, $p = .31$) but was statistically significantly lower in patients with intracranial stenosis on aspirin + ticagrelor (HR 0.66; 95\% CI 0.47 – 0.93, $p = .016$). Exploratory analyses showed that the risk of stroke/death in patients undergoing post-randomisation CEA or CAS was 8.7\% (9/46) with aspirin + ticagrelor versus 23.7\% (9/38) on aspirin ($p = .069$), with severe bleeding in one patient in each group. However, the small number of subjects undergoing revascularisation precludes any definitive comment. THALES has not yet published outcomes on aspirin + ticagrelor therapy versus aspirin alone in...
patients with recent TIA/stroke and a 50–99% extracranial SCS.

The debate regarding peri-operative monotherapy versus combination APRx must take account of all potential benefits and not just focus on peri-operative bleeding risks. In addition to RCT evidence that aspirin + clopidogrel reduces early recurrent stroke,25,311,312 evidence suggests it also reduces recurrent stroke in the 48–72 hour time period between SCS patients being seen in a TIA clinic and undergoing CEA308,328 as well as evidence from national registries that aspirin + clopidogrel reduces peri-operative stroke,37 especially early post-operative thromboembolic stroke.309 The most important bleeding complication after CEA is neck haematoma, which is associated with increased morbidity and mortality.137

In a 2011 audit of practice between 2003 and 2009 (n = 5264), the Vascular Study Group of New England (VSGNE) registry found no evidence that aspirin + clopidogrel was associated with higher rates of re-exploration for neck haematoma (1.5%: no APRx; 1.2%: aspirin monotherapy; 0.7%: clopidogrel monotherapy; and 1.4%: aspirin + clopidogrel).329 However, in a meta-analysis of one RCT and seven observational studies (n = 36881), CEA patients on aspirin + clopidogrel (n = 8536) had a small but statistically significantly higher rate of major bleeding complications (1.27% vs. 0.83%) than patients on APRx monotherapy (Risk Difference 0.005; 95% CI 0.00 – 0.01, p = .003).37 Two prospective, observational studies which did not report increased risks of post-operative bleeding on aspirin + clopidogrel308,330 were not included in this meta-analysis.

For the increasing proportion of physicians/surgeons prescribing combination APRx in the peri-operative period, there are three scenarios (each with different durations and dosages), making it essential that neurologists and stroke physicians liaise with vascular surgical colleagues to develop protocols specifying preferred APRx regimens (combination vs. monotherapy) before commencing treatment, so as not to delay CEA. This is important as the antiplatelet effects of aspirin, clopidogrel, and dipyridamole last the lifetime of the platelet (up to 10 days). The three scenarios include patients with: (1) 0–49% carotid stenosis with no other apparent cause for TIA/stroke on neurovascular work up in whom CEA/CAS is not indicated; (2) recent TIA/stroke with a 50–99% stenosis where CEA/CAS is not being considered (patient choice, comorbidities); and (3) recent TIA/stroke with a 50–99% stenosis where urgent CEA or CAS is planned. Figure 3 details choices of combination APRx for each scenario, including dosages and alternative antiplatelet strategies after neuro-imaging has excluded ICH. CEA should be performed with careful control of post-operative BP, as uncontrolled post-CEA hypertension increases the risk of hyperperfusion syndrome, ICH, and neck haematoma formation (section 7.1.4). If one opts for peri-operative aspirin + clopidogrel combination therapy, aspirin can be stopped on day one after CEA and clopidogrel 75 mg daily continued indefinitely, unless contraindicated (Figure 3).

The 2021 AHA guidelines made no recommendation regarding combination APRx prior to CEA.1 The German-Austrian guidelines recommend combination APRx between

Figure 3. Timing, dose, and duration of combination antiplatelet therapy in the early phase after onset of transient ischaemic attack (TIA) or minor ischaemic stroke in patients with symptomatic carotid stenosis with or without planned treatment by carotid endarterectomy (CEA) or carotid artery stenting (CAS). MR = modified release; OD = once daily; BD = twice daily. Reproduced with permission from: Naylor AR, McCabe DJH. Cerebrovascular Disease: Decision making including optimal medical therapy. In: Eds: Sidawy A & Perler B. Rutherford’s Vascular Surgery and Endovascular Therapy, 10th Edition. Philadelphia, Chapter 92, pages 1203–1219, Elsevier. 2021.331
symptom onset and CEA (to prevent early recurrent stroke) and that aspirin + clopidogrel may be considered to prevent peri-operative stroke after CEA. The SVS guidelines advise that in patients with a TIA or minor stroke within 24 hours of onset, aspirin + clopidogrel is recommended over aspirin alone or as an alternative to aspirin + dipyridamole. However, it was unclear what policy SVS applied to CEA patients, as they advised that decisions regarding DAPT should be individualised.

4.2.3. When to prescribe gastric protection medications?
Prescribing proton pump inhibitors (PPI) may prevent gastrointestinal bleeding, but some (omeprazole, esomeprazole, lansoprazole) may interfere with clopidogrel’s antiplatelet effects. In the absence of risk factors, DAPT can be prescribed without a PPI. However, if the patient to be started on DAPT has a higher than average risk of gastrointestinal (GI) bleeding (prior GI ulcer or GI haemorrhage, anticoagulation or corticosteroid prescription) or more than two of: age > 65 years, dyspepsia, gastro-oesophageal reflux, *Helicobacter pylori* infection, and chronic alcohol use, gastric protection should be considered. If a PPI is indicated, it is recommended to select a PPI which does not interact with clopidogrel (e.g., pantoprazole). If the patient is PPI intolerant or they are ineffective, an H₂ receptor antagonist (e.g., famotidine) is an alternative.

Recommendation 23
For symptomatic carotid stenosis patients who are not being considered for carotid endarterectomy or stenting following a transient ischaemic attack or minor ischaemic stroke, short term aspirin plus clopidogrel for 21 days followed by clopidogrel monotherapy, or long term aspirin plus modified release dipyridamole is recommended*.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
</table>

* Alternative antiplatelet strategies and dosages in the event of allergy or intolerance to aspirin or clopidogrel are detailed in section 4.2.2.4.

Recommendation 24
For recently symptomatic carotid stenosis patients who are not being considered for carotid endarterectomy or stenting who are intolerant of, or allergic to, aspirin and clopidogrel, dipyridamole monotherapy or ticagrelor monotherapy is recommended*.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>B</td>
<td>Amarenco et al. (2017), Diener et al. (1996)</td>
</tr>
</tbody>
</table>

* Alternative antiplatelet strategies and dosages in the event of allergy or intolerance to aspirin or clopidogrel are detailed in section 4.2.2.4.
Recommendation 30 New

For recently symptomatic carotid stenosis patients undergoing carotid endarterectomy who are intolerant of, or allergic to, aspirin and clopidogrel, dipyridamole modified release monotherapy (200 mg twice daily) is recommended.

Class Level References ToE
I C Diener et al. (1996)378

Recommendation 31 Changed

For recently symptomatic patients undergoing carotid stenting, combination antiplatelet therapy with aspirin (75–325 mg daily) and clopidogrel is recommended. Clopidogrel (75 mg daily) should be started at least three days prior to stenting or as a single 300 mg loading dose in urgent cases. Aspirin and clopidogrel should be continued for at least four weeks after stenting and then long term antiplatelet monotherapy (preferably clopidogrel 75 mg daily) should be continued indefinitely.

Class Level References ToE
I C Murphy et al. (2019)379, McKevitt et al. (2005)231, Quinn et al. (1999)372, NICE318

Recommendation 32 Unchanged

For patients who have undergone carotid endarterectomy or carotid stenting, long term aspirin + clopidogrel therapy is not recommended unless required for cardiac or other vascular disease indications.

Class Level References ToE

Recommendation 33 Unchanged

For patients on antiplatelet therapy with a higher than average risk of gastrointestinal bleeding*, gastroprotective treatment or proton pump inhibition should be considered. If a proton pump inhibitor is indicated, it is recommended to select one which does not significantly influence the antiplatelet effects of clopidogrel (e.g. pantoprazole).

Class Level References ToE

* Alternative antiplatelet strategies and dosages in the event of allergy or intolerance to aspirin or clopidogrel are detailed in section 4.2.4.2. Criteria for being considered higher risk of gastrointestinal bleeding are detailed in section 4.2.3.

4.2.4. Combination antiplatelet therapy and direct oral anticoagulants. COMPASS provided no data on SCS patients, and patients were excluded if they reported a “non-lacunar” ischaemic stroke within one month of randomisation. The 2021 AHA guidelines highlighted the absence of evidence regarding the effectiveness of direct oral anticoagulants (DOACs) plus low dose aspirin for secondary stroke prevention as being a knowledge gap to be addressed. No guideline currently recommends low dose rivaroxaban + aspirin in SCS patients.

4.2.5. Antiplatelet “high on treatment platelet reactivity”. In patients with > 50% SCS, the prevalence of antiplatelet “high on treatment platelet reactivity” (HTPR, previously termed antiplatelet resistance) can vary between 9% and 64% for aspirin and 0–83% for clopidogrel. In ACS patients, aspirin HTPR has been reported in 23–57% of patients, with clopidogrel HTPR in 25–100%. Reasons for the wide variability are that prescribed doses and timing of assessment of antiplatelet HTPR status after starting treatment varied between studies, while the prevalence of antiplatelet HTPR is heavily influenced by shear stress levels to which platelets are exposed in the platelet function/reactivity testing platforms. Because of the wide prevalence ranges observed both within and between studies, it is not clear which (if any) of the currently available platelet function/reactivity assays are likely to inform treatment decisions in ACS/SCS patients who may have “antiplatelet HTPR” on their prescribed APRx regimen. This is clinically important because a meta-analysis of 20 observational studies (n = 4 989) evaluating platelet function/reactivity testing showed a higher risk of recurrent TIA/stroke, MI, or vascular death in TIA/ ischaemic stroke patients with versus without antiplatelet HTPR on any antiplatelet regimen (OR 2.93; 95% CI 1.90 – 4.51). However, no studies were adequately powered to determine whether ex vivo antiplatelet HTPR status can predict risks of ischaemic or haemorrhagic events in SCS or ACS patients in the peri-operative or non-peri-operative periods.

The available evidence does not currently support the routine use of ex vivo HTPR testing to tailor APRx in individual patients with carotid stenosis unless they are included within research studies or clinical trials. These studies are vitally important and should include more than one type of testing platform to assess HTPR status, because no single device has been shown to be superior at predicting outcomes in patients with carotid stenosis. No guidelines currently recommend routine antiplatelet HTPR testing to tailor APRx in individual patients. The SVS noted that routine testing for platelet reactivity is not yet supported by evidence.

4.2.6. Carotid interventions in patients on anticoagulants. No guideline has specifically addressed how to manage patients undergoing carotid interventions who are taking anticoagulants pre-operatively. The aim is to minimise peri-operative thromboembolic and bleeding complications. The decision about whether CEA or CAS is preferred should be based on which is considered the best intervention for each individual patient. This section offers pragmatic advice on the management of patients awaiting a carotid intervention who are currently prescribed anticoagulants, based on a consensus of the GWC. Other guidelines have advised on when to stop...
and restart anticoagulation in patients requiring a surgical or endovascular intervention,139 but not when to prescribe adjunctive antiplatelet therapy during the peri-operative period.

Planning appropriate antithrombotic strategies requires careful assessment of thrombotic and bleeding risks in individual patients, as well as the bleeding risk associated with the procedure. Conditions associated with high thrombotic risk include mechanical heart valves (aortic tilting disc, any mitral prosthesis), thrombophilies, and a venous thromboembolic event within three months or which occurred on therapeutic anticoagulation.339,340,341

Conditions associated with high bleeding risks include a HAS-BLED score > 3,342 bleeding episode less than three months, thrombocytopenia (< 50 × 10⁹/L) and previous bleeding after a similar procedure or with bridging therapy. Peri-operative antithrombotic management should be discussed within an MDT whenever thrombotic and/or bleeding risks are deemed high (ideally including specialists in coagulation), and an agreed strategy should be documented in the case notes. Whichever anticoagulation strategies are selected, careful control of post-operative BP after CEA and CAS is essential to reduce the risk of neck haematoma and ICH (section 7.1.3.3).

4.2.6.1. Assessing peri-operative bleeding risks: carotid endarterectomy. In an SVS-VQI audit (n = 28 683), CEA patients undergoing re-exploration for neck haematoma incurred significantly higher hospital risks versus patients not re-explored, including; stroke: 3.7% vs. 0.8%, (p < .001); MI: 6.2% vs. 0.8%, (p < .001); death: 2.5% vs. 0.2%, (p < .001); stroke/death: 5.0% vs. 0.9%, (p < .001). Accordingly, CEA is classified as a “high risk of bleeding” operation.343

4.2.6.2. Assessing peri-operative bleeding risks: carotid artery stenting. Bleeding complications after CAS are mostly access related and the incidence of re-intervening operation. not re-explored, including; stroke: 3.7% vs. 0.8%, (p < .001); MI: 6.2% vs. 0.8%, (p < .001); death: 2.5% vs. 0.2%, (p < .001); stroke/death: 5.0% vs. 0.9%, (p < .001). Accordingly, CEA is classified as a “high risk of bleeding” operation.343

4.2.6.3. Peri-operative antiplatelet and anticoagulation strategies. This depends on the procedure (CEA, CAS), thromboembolic risk, bleeding risk, type of anticoagulant (vitamin K antagonist [VKA] or DOAC), renal function, and whether bridging anticoagulation is required.

4.2.6.3.1. Carotid endarterectomy. Because CEA is a high risk of bleeding procedure, the anticoagulants need to be stopped routinely and for longer durations than for low risk of bleeding procedures. Figure 4 details suggested timings for stopping and restarting VKAs and DOACs. Decisions regarding restarting VKAs/DOACs must take account of post-operative bleeding complications, as well as the patient’s ability to swallow. Aspirin 300 mg daily should be prescribed as indicated in Figure 4.

The need for pre-operative bridging anticoagulation requires careful discussion within an MDT as an RCT involving patients with atrial fibrillation undergoing elective surgery showed that bridging was associated with higher risks of major bleeding and did not reduce thromboembolic events.14 The Dresden Registry reported similar findings.117 Accordingly, pre-operative bridging with therapeutic dose low molecular weight heparin (LMWH) or unfractionated heparin (UFH) is only indicated in a very small cohort of CEA patients considered at high risk of thromboembolism after cessation of VKAs, which would include patients with a recent (within three months) deep vein thrombosis or pulmonary embolism, or those who suffered a thromboembolic event during previous interruption of oral anticoagulation.343 If pre-operative bridging is indicated in VKA patients (Figure 5), the last dose of LMWH should be ≥ 24 hours pre-operatively. Intravenous UFH can be stopped four to six hours before CEA.

Post-operative bridging is reasonable in CEA patients who have stopped their VKAs and who are considered high risk of thromboembolism. Pre-operative bridging is not, however, recommended in patients on DOACs, as their predictable short half life allows for proper timing of DOAC cessation just before surgery.343

In CEA patients whose VKAs have been stopped and who are classed as low thromboembolic risk, VKAs can be restarted on day 3. Aspirin (300 mg daily) should be continued until either a last dose on day 5 or when the International Normalised Ratio is therapeutic (Figure 5). In CEA patients whose VKAs have been stopped and who are considered high thromboembolic risk, prophylactic subcutaneous LMWH can be prescribed for the first 48 hours after CEA, with VKAs restarted on day 3, when the LMWH is increased to therapeutic doses and continued until the International Normalised Ratio has reached therapeutic levels. In the latter patients, the last dose of aspirin should be on day 3 (Figure 5).

DOAC patients usually do not require post-operative bridging because they achieve full anticoagulation within eight hours of restarting DOACs. Patients at low thromboembolic risk can, therefore, restart DOACs on post-operative day 3, with the last dose of aspirin (300 mg) being taken on day 3 (Figure 5). In DOAC patients considered at high thromboembolic risk, the potential for increased bleeding complications needs to be considered. Prophylactic dose LMWH can be started 6—24 hours post-operatively and continued until day 3 when the DOAC is restarted. In these patients, the last dose of aspirin is taken on day 3.

4.2.6.3.2. Carotid artery stenting. Decisions about anticoagulation and antiplatelet strategies during CAS depend upon whether unit policy is to (i) stent patients while on anticoagulation with the addition of a single antiplatelet agent during the peri-operative period, (ii) stent patients after anticoagulation is stopped with a single antiplatelet agent prescribed during the peri-operative period, or (iii) stent patients after anticoagulation is stopped with combination antiplatelet therapy prescribed during the peri-operative period. Much of the debate is driven by concerns about post-operative bleeding complications (especially ICH) if anticoagulation is continued, versus worries about higher rates of peri-operative ischaemic stroke if...
antiplatelet therapy is not co-prescribed. Accordingly, individual units will benefit from MDT review, which should ideally include a specialist in coagulation (especially if bridging is being considered) and agreed treatment strategies should be documented in the case notes.

Historically, most CAS procedures were performed with anticoagulation stopped pre-operatively. However, the 2019 Society of Interventional Radiology guidelines advise that anticoagulants do not need to be stopped routinely, unless there are additional high risk of bleeding features. This advice has probably not, however, translated into clinical practice in many CAS centres. Although there have been no RCTs in CAS patients, evidence from observational studies suggest that CAS can be performed safely while the patient is taking anticoagulants plus antiplatelet therapy during the peri-operative period, without increasing bleeding complications, especially if smaller sheaths and ultrasound guided punctures are used. Extrapolation of data from

Figure 4. Stopping and restarting anticoagulation prior to carotid endarterectomy (CEA). Blue boxes represent days for taking anticoagulant, red boxes represent days to take 300 mg aspirin daily. If intolerant of, or allergic to aspirin, 75 mg of clopidogrel daily or 200 mg of dipyridamole modified release monotherapy twice daily are alternatives. eGFR = estimated glomerular filtration rate, measured as mL/min/1.73m². In patients taking vitamin K antagonists (VKA), post-operative aspirin is continued until the International Normalised Ratio is therapeutic (after VKA restarted) or until the patient is started on therapeutic dose low molecular weight heparin or intravenous unfractionated heparin.

Figure 5. Anticoagulation, antiplatelet, and bridging strategies in patients undergoing carotid endarterectomy (CEA). If intolerant of, or allergic to aspirin, 75 mg of clopidogrel monotherapy daily or 200 mg of dipyridamole modified release monotherapy twice daily are alternatives. Vitamin K antagonists (VKA) and direct oral anticoagulants (DOACs) should be stopped according to timings in Figure 4. If pre-operative bridging is being considered, this decision should involve multidisciplinary team discussion (preferably involving a specialist in coagulation) and the benefits and risks of bridging must be clearly explained to the patient and documented in the case notes. LMWH = low molecular weight heparin; UFH = unfractionated heparin.
RCTs in AF patients undergoing percutaneous coronary interventions suggest that dual antithrombotic therapy (anticoagulant plus a single antiplatelet agent) appears to be superior to triple therapy (anticoagulant plus aspirin and clopidogrel) in reducing bleeding events, while being non-inferior regarding the associated risks of thromboembolic events. Figure 6 provides a pragmatic algorithm for anticoagulation and single agent antiplatelet strategies in CAS patients.

In CAS patients where VKAs and DOACs are to be stopped, the timing is the same as for CEA (Figure 4). If bridging is being considered in VKA patients, this decision should involve MDT review (ideally involving a specialist in coagulation) and the benefits versus risks of bridging must be clearly explained to the patient and documented in the case notes. In the patient algorithm (Figure 6), antiplatelet monotherapy (aspirin 300 mg the day before CAS, then 75 – 100 mg daily until 30 days) is appropriate, given that these patients will also receive intra-operative heparin. If the patient is intolerant of, or allergic to aspirin, 75 mg of clopidogrel monotherapy daily or 200 mg of dipyridamole modified release monotherapy twice daily are alternatives. After 30 days, antiplatelet therapy is stopped, and anticoagulation continued long term.

In some centres, CAS practitioners prefer to stop anticoagulation therapy pre-operatively and then prescribe combination antiplatelet therapy throughout the peri-procedural period, to minimise the risks of embolic stroke from the CAS site. If this is the preferred management strategy, combination antiplatelet therapy should be started on the day after VKA/DOAC cessation (see section 4.2.2.3 for choice and dosages of combination APRx). However, it is important that the MDT determine exactly when post-operative combination antiplatelet therapy should cease and when anticoagulation should be restarted.

4.2.7. Lipid lowering therapy

4.2.7.1. Statins as secondary prevention

RCTs have evaluated lipid lowering therapy in TIA or minor ischaemic stroke patients (Table 17), but only one subgroup analysis included patients with carotid disease.

![Figure 6. Anticoagulation and antiplatelet strategies in patients undergoing carotid artery stenting (CAS) who are taking anticoagulants pre-operatively.](image-url)

Randomised controlled trials (RCTs) evaluating lipid lowering therapy in transient ischaemic attack (TIA) or minor ischaemic stroke patients

<table>
<thead>
<tr>
<th>RCT</th>
<th>Inclusion criteria</th>
<th>Treatment strategy</th>
<th>Main findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPS285</td>
<td>3 280 patients with prior TIA (46%), minor ischaemic stroke (63%), prior carotid revascularisation (10%) plus cholesterol >3.5 mmol/L. Mean interval from symptom onset to randomisation: 4y</td>
<td>40 mg simvastatin daily vs. placebo</td>
<td>Simvastatin conferred 20% RR in stroke, non-fatal MI, death from coronary artery disease and/or coronary or non-coronary revascularisation in patients with prior cerebrovascular disease (p = .001). 19% RR in ischaemic stroke with simvastatin (6.1%) vs. placebo (7.5%) was not significant (p = .10) with no statistically significant increase in haemorrhagic stroke with simvastatin (1.3% vs. 0.7%)</td>
</tr>
<tr>
<td>FASTER211</td>
<td>392 patients randomised <24 h of TIA or minor ischaemic stroke using factorial design</td>
<td>All received aspirin plus either clopidogrel vs. placebo and simvastatin vs. placebo</td>
<td>No significant differences in 90 d endpoint of any stroke between those who were vs. not taking simvastatin</td>
</tr>
<tr>
<td>SPARC249</td>
<td>4 731 patients with ischaemic stroke / TIA <6 mo with baseline LDL-C 2.6–4.9 mmol/L and no known CAD</td>
<td>80 mg atorvastatin vs. placebo</td>
<td>80 mg atorvastatin conferred significantly lower fatal / non-fatal stroke at 5y (11.2% vs. 13.1%; HR 0.84, 95% CI 0.71–0.99; p = .030). Significant increase in haemorrhagic stroke with atorvastatin vs. placebo (2.3% vs. 1.4%; HR 1.66, 95% CI 1.08–2.55; p = .020) which did not negate benefit of atorvastatin</td>
</tr>
<tr>
<td>SPARCL247</td>
<td>1 007 SPARCL patients with carotid stenosis (mean 51%) not undergoing CEA or CAS <30 d of randomisation</td>
<td>80 mg atorvastatin vs. placebo</td>
<td>80 mg atorvastatin associated with significant reductions in any stroke (HR 0.67, 95% CI 0.47–0.94; p = .020); late carotid revascularisation (HR 0.44, 95% CI 0.24–0.79; p = .006), and major coronary events (HR 0.57, 95% CI 0.32–1.0; p = .050)</td>
</tr>
<tr>
<td>TST Trial7</td>
<td>2 860 patients <3 mo of ischaemic stroke (mRS 0–3) or <15 d of TIA (patients randomised within median of 6 d after TIA / stroke). Outcomes in SCS patients not reported</td>
<td>Aggressive lipid lowering with statins ± ezetimibe to achieve lower LDL-C target of <1.8 mmol/L vs. higher LDL-C target of 2.3–2.8 mmol/L.</td>
<td>66% in lower LDL-C and 94% in higher LDL-C groups received statins only with 33.8% and 5.8%, respectively, also receiving ezetimibe (10 mg daily). Lower LDL-C target (vs. higher target) associated with significant reduction in composite endpoint of any cardiovascular death, stroke, MI, hospitalisation for unstable angina requiring urgent CABG or PCI or TIA treated by urgent CEA / CAS at 3.5 y. (8.5 vs. 10.9%; HR 0.78, 95% CI 0.61–0.98; p = .040)</td>
</tr>
<tr>
<td>STARS90</td>
<td>98 patients randomised <12 h of ischaemic stroke</td>
<td>40 mg simvastatin vs. placebo (only 4% of simvastatin patients and 15% of placebo patients had LAA)</td>
<td>Independence at 90 d (mRS ≤2): simvastatin 69% vs. 70% placebo (OR 0.99, 95% CI 0.35–2.78; p = .98) No difference in safety (haemorrhagic transformation, haemorrhagic events, death, infections, serious adverse events)</td>
</tr>
<tr>
<td>ASSORT27</td>
<td>257 with acute ischaemic stroke plus dyslipidaemia or LDL-C >2.6 mmol/L randomised to early statin therapy vs. delayed statin therapy</td>
<td>131 started statin therapy <24 h (for 12 w) vs. 126 starting statins on day 7 (for 11 w); atorvastatin 20 mg/d, pitavastatin 4 mg/d or rosvastatin 5 mg/d)</td>
<td>At 90 d, mRS distribution not different between patients receiving early statin therapy vs delayed (OR 1.1, 95% CI 0.79–1.4) LAA responsible for 43% of strokes at presentation (but no data regarding extracranial vs. intracranial disease or whether they were carotid vs. VA)</td>
</tr>
<tr>
<td>EUREKA22</td>
<td>316 statin naïve patients randomised <48 h of acute ischaemic stroke. 33–37% had a 50–99% stenosis of a brain supplying artery, but number with extracranial SCS not reported</td>
<td>Rosuvastatin 20 mg (n=137) vs. placebo (n=152) over 14 days</td>
<td>No difference in NIBLs at 5 or 14 d on DW-MRI (19.7% rosvastatin vs. 23.6% placebo; RR 0.83, 95% CI 0.53–1.3). Rosuvastatin group had a lower risk of new or worsening haemorrhagic transformation of an infarct (4.4%) vs. 14.5% with placebo (p = .007)</td>
</tr>
</tbody>
</table>

CEA = carotid endarterectomy; CAS = carotid artery stenting; CAD = coronary artery disease; MI = myocardial infarction; CABG = coronary artery bypass graft; PCI = percutaneous coronary intervention; RR = relative risk LDL-C = low density lipoprotein cholesterol; OR = odds ratio; CI = confidence interval; SCS= symptomatic carotid stenosis; mRS = modified Rankin score; NIBLs = new ischaemic brain lesions; DW-MRI = diffusion weighted magnetic resonance imaging; LAA = large artery atherosclerosis.
In most RCTs in patients presenting with TIA/stroke (including those with carotid disease), lipid lowering therapy reduced late cardiovascular events (including stroke). Lower LDL-C targets (< 1.8 mmol/L) were associated with lower stroke rates and greater regression of carotid atherosclerosis, compared with higher LDL-C targets (2.3 – 2.8 mmol/L).8

4.2.7.2. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. Acute ischaemic stroke patients were excluded from many RCTs involving PCSK9 inhibitors. A secondary analysis of FOURIER assessed outcomes in patients with prior ischaemic stroke who had an LDL-C ≥ 1.8 mmol/L or non-high density lipoprotein cholesterol ≥ 2.6 mmol/L after at least two weeks stabilisation on a moderate or high intensity statin (3.2–3.9% were also on ezetimibe).18 Median delay between stroke onset and randomisation was 3.3 years, with only 23% randomised within one year of stroke onset and none at less than four weeks. The risk of stroke, MI, cardiovascular death, hospitalisation for unstable angina or coronary revascularisation over a median 2.1 year follow up was significantly lower in 2 686 patients randomised to evolocumab (140 mg every two weeks or 420 mg every four weeks) versus 2 651 patients on placebo (HR 0.85; 95% CI 0.72 – 1.00, p = .047). However, the risks of any stroke and ischaemic stroke were no different. Evolocumab did not increase haemorrhagic stroke, despite median LDL-C levels of 0.7 – 0.8 mmol/L.18 The authors suggested that patients with ischaemic stroke and additional atherosclerotic risk factors may benefit from LDL-C levels below current targets.

4.2.7.3. Lipid targets in stroke/transient ischaemic attack patients. There is sufficient high quality evidence to conclude that patients presenting with TIA or minor ischaemic stroke should be prescribed lipid lowering therapy, unless not tolerated. Both the 2021 AHA and the 2019 ESC-EAS guidelines recommend high dose atorvastatin 80 mg or rosuvastatin 20 mg, unless not tolerated.1,258 As no RCTs have specifically evaluated lipid lowering targets in SCS or ACS patients, the GWC have mainly adopted targets recommended in the 2021 AHA3 and the 2019 ESC-EAS guidelines.258 The aim is for a total cholesterol < 3.5 mmol/L (< 135 mg/dL),348 LDL-C < 1.8 mmol/L (< 70 mg/dL),7,347,348 or a 50% reduction in LDL-C versus baseline.1 It is reasonable to add ezetimibe (10 mg daily) in SCS patients who fail to achieve lipid targets on maximum doses or maximum tolerated statin doses.1,7 The GWC acknowledges that the ESC-EAS guidelines recommend a lower target for LDL-C (< 1.4 mmol/L [< 54 mg/dL]) in very high risk patients with atherosclerotic cardiovascular disease, which includes TIA/stroke patients, as well as significant ACS, but ESC-EAS did not define what significant ACS meant.258 However, due to a statistically significant increase in haemorrhagic stroke with atorvastatin versus placebo in SPARCL (2.3% vs. 1.4%; HR 1.66, 95% CI 1.08 – 2.55, p = .020)49 and the exclusion of patients with TIA/acute stroke from PCSK9 inhibitor trials, the GWC based their recommended LDL-C target of < 1.8 mmol/L on RCTs involving stroke/TIA patients. However, in SCS or ACS patients with additional very high risk factors (e.g., CAD, PAD; type II DM with target organ damage, longstanding type I DM), a target LDL-C < 1.4 mmol/L (< 54 mg/dL) should be considered.258 Pending RCT data, in SCS patients who are intolerant of, or not achieving LDL-C targets on statins (with or without ezetimibe), additional or alternative treatment with PCSK9 inhibitors should be considered.18

Recommendation 34

For patients with a symptomatic carotid stenosis, statin therapy is recommended for the long term prevention of stroke, myocardial infarction and other cardiovascular events.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>B</td>
<td>Sillesen et al. (2008)27</td>
<td></td>
</tr>
</tbody>
</table>

Recommendation 35

For symptomatic carotid stenosis patients who do not reach their lipid targets on maximum doses or maximum tolerated doses of statins, ezetimibe (10 mg daily) is recommended.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>B</td>
<td>Amarenco et al. (2020)</td>
<td></td>
</tr>
</tbody>
</table>

Recommendation 36

For symptomatic carotid stenosis patients who are intolerant of, or not achieving target low density lipoprotein levels on statins, with or without ezetimibe, additional or alternative treatment with PCSK9 inhibitors should be considered.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIa</td>
<td>B</td>
<td>Giugliano et al. (2020)26</td>
<td></td>
</tr>
</tbody>
</table>

4.2.7.4. Statins during carotid interventions. In a meta-analysis (seven observational studies; n = 610), statin pre-treatment in patients with > 50% SCS was associated with a lower incidence of MES during TCD monitoring versus statin naive patients (RR = 0.67; 95% CI 0.45 – 0.98).52 In another meta-analysis (six observational studies; n = 7 503), patients taking statins prior to CEA had lower peri-operative mortality (0.2% vs. 1.3%) than statin naive patients (OR 0.26; 95% CI 0.1 – 0.61), plus a non-significant reduction in peri-operative stroke (1.4% vs. 3.0%) over statin naive patients (OR 0.4; 95% CI 0.15 – 0.90).100 In a third meta-analysis (11 observational studies; n = 4 088), patients taking statins prior to CAS had lower mortality (OR 0.30; 95% CI 0.10 – 0.96) and procedural stroke (OR 0.39; 95% CI 0.27 – 0.58) than statin naive patients.101 Stroke patients pre-scribed statins should not have this medication withdrawn acutely, because RCTs suggest that stopping statins for three days after acute stroke onset (vs. continuing atorvastatin 20 mg daily) was associated with increased rates of death or dependency at 90 days (OR 4.66; 95% CI 1.46 – 14.91, p = .043), after adjusting for age and baseline stroke severity.42
4.2.8. Management of hypertension

4.2.8.1. Secondary prevention in patients with stroke/transient ischaemic attack. A Cochrane review (11 RCTs; \(n = 38 \, 742 \)) reported that antihypertensive therapy reduced the relative risk of recurrent stroke by 24% in patients with a prior ischaemic stroke (RR 0.76; 95% CI 0.64 – 0.89). \(^{14} \) A meta-analysis of secondary stroke prevention (14 RCTs; \(n = 42 \, 736 \)) showed that the extent of SBP and DBP reduction was linearly associated with the magnitude of reduction in recurrent cerebrovascular and cardiovascular events \(^{68} \) emphasising the importance of strict BP control in patients with prior cerebrovascular events. As with ACS patients, the GWC advises readers to refer to ESC-ESH thresholds for treating hypertension (section 3.1.5). \(^{236} \)

4.2.8.2. Blood pressure management during carotid endarterectomy. Because SBP > 180 mmHg is an independent risk factor for stroke after CEA, \(^{350} \) it is reasonable to perform urgent CEA when pre-operative BP is < 180 mmHg. There are no published data for CAS patients, but a similar approach seems reasonable. Symptomatic patients with SBP > 180 mmHg should receive urgent, titrated antihypertensive treatment before undergoing CEA, while acknowledging that very rapid BP lowering before CEA and CAS may be inadvisable in patients with severe bilateral stenoses. \(^{351} \) Persisting or worsening hypertension after treatment should be treated actively to prevent hyperperfusion syndrome, ICH, bleeding complications, and cardiac events in the early post-operative period \(^{225} \) (section 7.1.3.3).

4.2.9. Management of diabetes mellitus. Principles underpinning the management of DM patients with SCS are similar to those with ACS (section 3.1.6). The Prospective Pioglitazone Clinical Trial in macroVascular Events (PROACTIVE) \((n = 5 \, 238)\) investigators reported that pioglitazone (in addition to existing glucose lowering and cardiovascular medications), lowered the risk of stroke in type II DM patients. \(^{242} \) Treatment of DM is important in the acute stroke setting, but it is reasonable to aim for normoglycaemia because intensive blood glucose control has not been shown to be beneficial. \(^{243,244,250} \) Thereafter, it is reasonable to aim for optimal glycaemic control as per updated guidelines from committees with expertise in treating patients with diabetes. \(^{243,244} \)

4.2.10. Adherence to medications. Adherence was analysed in 114 TIA/ischaemic stroke patients who were followed for a median of 1.7 years. \(^{354} \) Letters describing clinical details and a goal directed treatment plan were sent to the patient and referring doctor. The proportion continuing to take prescribed medications was 94% for aspirin, 73% for dipyridamole, 81% for clopidogrel, 88% for statins, and 90% for antihypertensive therapy. Overall, 99% reported full adherence the preceding day, while 11% reported missing at least one medication over the preceding 14 days. Half reported that they never forgot to take their medications. \(^{355} \) The widest variation in adherence involved statins, possibly because of perceived side effects. \(^{355} \) Non-adherence contributes towards patients not achieving LDL-C targets, which increases the risk of recurrent vascular events. The same may apply to aspirin plus dipyridamole therapy (usually dipyridamole induced headache), but this can be reduced by slow dose escalation in the first week of treatment.

4.3. Randomised trials: endarterectomy versus medical therapy

4.3.1. Thirty day and five year outcomes in the randomised trials. Three RCTs (NASCET, ECST, and the Symptomatic Veterans Affairs Co-operative Study [SVACS]) compared CEA with BMT in SCS patients reporting carotid territory symptoms within six months. \(^{188,189,196} \) The Carotid Endarterectomy Trialists Collaboration (CETC) performed an individual patient meta-analysis of 6 092 patients in the three RCTs, with pre-randomisation angiograms re-measured using the NASCET method (Table 18). \(^{357-359} \) CEA (plus BMT) conferred no benefit in patients with < 50% stenoses (see section 4.10 for management of patients developing recurrent symptoms despite BMT). CEA conferred benefit in patients with moderate (50–69%) and severe (70–99%) stenoses (Table 18). The benefit conferred by CEA increased with stenosis severity, with the exclusion of CNO. CETC concluded that CNO patients gained no benefit from CEA, \(^{357,358} \) and the controversy is discussed further in section 4.12.

4.3.2. Who is at higher risk of stroke on medical therapy? Clinical/imaging predictors of increased stroke risk on BMT in the RCTs are detailed in Table 19.

4.4. Randomised trials: endarterectomy versus stenting

4.4.1. Thirty day outcomes. Ten RCTs compared CEA with CAS (not CA) in 5 797 SCS patients. A meta-analysis of 30...
Table 18. Individual patient meta-analysis of five year risks of any stroke, including peri-operative stroke or death, from European Carotid Surgery Trial (ESCT), North American Symptomatic Carotid Endarterectomy Trial (NASCET), and Symptomatic Veterans Affairs Carotid Study (SVACS) randomised controlled trials

<table>
<thead>
<tr>
<th>Stenosis severity, NASCET − %</th>
<th>Patients − n</th>
<th>5 y risk of any stroke (including peri-op stroke) − %</th>
<th>ARR at 5 y − %</th>
<th>RRR at 5 y − %</th>
<th>NNT to prevent one stroke at 5 y</th>
<th>Strokes prevented per 1 000 CEAs at 5 y</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEA + BMT</td>
<td>BMT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0−30</td>
<td>1 746</td>
<td>18.4</td>
<td>15.7</td>
<td>-2.7</td>
<td>N/b</td>
<td>N/b</td>
</tr>
<tr>
<td>30−49</td>
<td>1 429</td>
<td>22.8</td>
<td>25.5</td>
<td>-2.7</td>
<td>N/b</td>
<td>N/b</td>
</tr>
<tr>
<td>50−69</td>
<td>1 549</td>
<td>20.0</td>
<td>27.8</td>
<td>-7.8</td>
<td>28</td>
<td>13</td>
</tr>
<tr>
<td>70−99</td>
<td>1 095</td>
<td>17.1</td>
<td>32.7</td>
<td>-15.6</td>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>CNO</td>
<td>262</td>
<td>22.4</td>
<td>22.3</td>
<td>-0.1</td>
<td>N/b</td>
<td>N/b</td>
</tr>
</tbody>
</table>

CEA = carotid endarterectomy; BMT = best medical therapy; ARR = absolute risk reduction in stroke; RRR = relative risk reduction in stroke; NNT = number needed to treat to prevent one stroke at five years; N/b = no benefit; CNO = chronic near occlusion.

* Data derived from the Carotid Endarterectomy Trialists Collaboration.

Table 19. Clinical and imaging features that were predictive of a significant increase in late stroke in patients with 50−99% carotid stenoses randomised within European Carotid Surgery Trial (ESCT) and North American Symptomatic Carotid Endarterectomy Trial (NASCET)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Monitored risk</th>
<th>Risk reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increasing age*</td>
<td>5 y ARR in ipsilateral stroke conferred by CEA</td>
<td><65 y: 5.6% (NNT18); 65−75 y: 8.6% (NNT 12); >75 y: 19.2% (NNT 5)</td>
</tr>
<tr>
<td>Recency of symptoms</td>
<td>5 y ARR in ipsilateral stroke conferred by CEA</td>
<td><2 w: 18.5% (NNT 5); 2−4 w: 9.8% (NNT 10); 4−12 w: 5.5% (NNT 18); >12: 0.8% (NNT 125)</td>
</tr>
<tr>
<td>Men vs. women</td>
<td>5 y ARR in ipsilateral stroke conferred by CEA</td>
<td>Males: 11% (NNT 9); females: 2.8% (NNT 36)</td>
</tr>
<tr>
<td>Hemispheric vs. ocular symptoms</td>
<td>5 y ARR in ipsilateral stroke conferred by CEA</td>
<td>Ocular: 5% (NNT 20); TIA: 15% (NNT 7); stroke: 18% (NNT 6)</td>
</tr>
<tr>
<td>Cortical vs. lacunar stroke</td>
<td>3 y ARR in ipsilateral stroke conferred by CEA</td>
<td>Non-lacunar stroke: 15% (NNT 7); lacunar stroke: 9% (NNT 11)</td>
</tr>
<tr>
<td>Increasing medical comorbidities</td>
<td>2 y risk of ipsilateral stroke on BMT</td>
<td>0−5 comorbidities: 17%; 6: 23%; >7: 39%</td>
</tr>
<tr>
<td>Increasing medical comorbidities</td>
<td>2 y risk of ipsilateral stroke with CEA</td>
<td>0−5 comorbidities: 11%; 6: 6%; ≥7: 8%</td>
</tr>
<tr>
<td>Imaging features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irregular vs. smooth plaques</td>
<td>5 y ARR in ipsilateral stroke conferred by CEA</td>
<td>Smooth: 8% (NNT 13); irregular: 17% (NNT 6)</td>
</tr>
<tr>
<td>Increasing stenosis severity</td>
<td>5 y ARR in ipsilateral stroke conferred by CEA</td>
<td>50−69%: 4% (NNT 25); 60−69%: 5.9% (NNT 17); 70−79%: 15.8% (NNT 6); 80−99%: 17.7% (NNT 6); 90−99%: 32.4% (NNT 3)</td>
</tr>
<tr>
<td>Contralateral occlusion</td>
<td>5 y ARR in ipsilateral stroke conferred by CEA</td>
<td>Contralateral occlusion: 24% (NNT 4); no occlusion: 13% (NNT 8)</td>
</tr>
<tr>
<td>Tandem intracranial disease</td>
<td>3 y risk of ipsilateral stroke in medically treated patients with tandem intracranial disease increased with extracranial ICA stenosis severity</td>
<td>50−69%: 19% (NNT 5); 70−84%: 29% (NNT 3); 85−99%: 45% (NNT 2)</td>
</tr>
<tr>
<td>No recruitment of collaterals</td>
<td>2 y ARR in ipsilateral stroke conferred by CEA collaterals recruited: 5% (NNT 20); no recruitment: 19% (NNT 5)</td>
<td></td>
</tr>
</tbody>
</table>

CEA = carotid endarterectomy; BMT = best medical therapy; TIA = transient ischaemic attack; ICA = internal carotid artery; ARR = absolute risk reduction; NNT = number needed to treat to prevent one stroke; y = years; w = weeks.

day outcomes is detailed in Table 20. CAS (almost exclusively TFCAS) was associated with higher rates of any stroke, death/any stroke, death/disabling stroke, and death/any stroke/MI versus CEA.48

Table 21 details a meta-analysis of 30 day outcome data in 4 754 patients from four large multicentre RCTs that randomised > 500 patients including the Endarterectomy versus Stenting in patients with Symptomatic Severe carotid Stenosis (EVA-3S), the Stent-Protected Angioplasty versus Carotid Endarterectomy (SPACE) trial, the International Carotid Stenting Study (ICSS) and the Carotid Revascularisation Endarterectomy vs. Stenting (CREST) Trial.314,316,317,364 CAS (almost exclusively TFCAS) was associated with higher rates of 30 day stroke, death/stroke, and death/stroke/MI versus CEA.48 All other endpoints were similar.

4.4.1.2. Thirty day outcomes stratified by age.

The Carotid Stenting Trialists Collaboration (CSTC) performed an individual patient meta-analysis of 4 289 SCS patients in ICSS, CREST, EVA-3S, and SPACE. There was a strong association...
Table 20. Meta-analysis of 30 day outcomes in 10 randomised controlled trials (RCTs)* on patients with symptomatic carotid artery disease comparing carotid artery stenting (CAS) with carotid endarterectomy (CEA)

<table>
<thead>
<tr>
<th>RCTs / patients – n</th>
<th>CAS (95% CI) – %</th>
<th>CEA (95% CI) – %</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 / 4 257</td>
<td>1.9 (1.4–2.6)</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>10 / 5 535</td>
<td>8.5 (5.9–12.1)</td>
<td>9.3 (6.8–12.6)</td>
<td>3.3 (1.6–6.7)</td>
</tr>
<tr>
<td>6 / 4 855</td>
<td>3.3 (3.0–8.9)</td>
<td>0.8 (0.5–1.4)</td>
<td>4.8 (5.0–13.8)</td>
</tr>
<tr>
<td>5 / 3 534</td>
<td>1.4 (0.9–2.0)</td>
<td>1.6 (1.0–2.3)</td>
<td>5.1 (4.1–6.3)</td>
</tr>
<tr>
<td>6 / 3 980</td>
<td>1.38 (0.8–2.3)</td>
<td>1.42 (1.0–2.0)</td>
<td>1.61 (1.2–2.1)</td>
</tr>
</tbody>
</table>

Red shading indicate a statistically significant result favouring CEA. MI = myocardial infarction; OR = odds ratio; CI = confidence intervals.

* Carotid Revascularization versus Stenting Trial (CREST) -1; Endarterectomy versus Stenting in patients with Symptomatic Severe carotid Stenosis (EVA-3S); The International Carotid Stenting Study (ICSS); Stent Protected Angioplasty versus Carotid Endarterectomy (SPACE) -1.

Table 21. Meta-analysis of 30 day outcomes after carotid artery stenting (CAS) versus carotid endarterectomy (CEA) in four randomised controlled trials (RCTs) which randomised more than 500 patients with symptomatic carotid artery disease.

<table>
<thead>
<tr>
<th>RCTs / patients – n</th>
<th>CAS (95% CI) – %</th>
<th>CEA (95% CI) – %</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 / 3 413</td>
<td>1.2 (0.5–2.9)</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>4 / 4 754</td>
<td>7.8 (6.8–9.0)</td>
<td>8.7 (7.6–9.9)</td>
<td>3.3 (2.6–4.1)</td>
</tr>
<tr>
<td>4 / 4 754</td>
<td>3.3 (2.4–5.4)</td>
<td>0.7 (0.4–1.3)</td>
<td>8.0 (5.9–10.7)</td>
</tr>
<tr>
<td>3 / 3 531</td>
<td>0.9 (0.5–1.5)</td>
<td>1.0 (0.3–3.1)</td>
<td>5.2 (4.2–6.5)</td>
</tr>
<tr>
<td>2 / 3 031</td>
<td>1.67 (0.9–3.2)</td>
<td>1.39 (0.9–2.0)</td>
<td>1.60 (1.2–2.1)</td>
</tr>
</tbody>
</table>

Red shading indicated statistically significant result favouring CEA. MI = myocardial infarction; OR = odds ratio; CI = confidence interval.

* Carotid Revascularization versus Stenting Trial (CREST) -1; Endarterectomy versus Stenting in patients with Symptomatic Severe carotid Stenosis (EVA-3S); The International Carotid Stenting Study (ICSS); Stent Protected Angioplasty versus Carotid Endarterectomy (SPACE) -1.

Table 22. Age and 30 day rates of death or stroke after carotid endarterectomy (CEA) and carotid artery stenting (CAS) in patients with symptomatic carotid artery disease randomised within The International Carotid Stenting Study (ICSS), Carotid Revascularization versus Stenting Trial (CREST), Endarterectomy versus Stenting in patients with Symptomatic Severe carotid Stenosis (EVA-3S), Stent Protected Angioplasty versus Carotid Endarterectomy (SPACE).

<table>
<thead>
<tr>
<th>Age – y</th>
<th>CAS 30 d death or stroke</th>
<th>CEA 30 d death or stroke</th>
<th>CAS vs. CEA</th>
</tr>
</thead>
<tbody>
<tr>
<td><60</td>
<td>13 / 407 (3.2)</td>
<td>21 / 407 (5.2)</td>
<td>0.62 (0.31–1.23)</td>
</tr>
<tr>
<td>60–64</td>
<td>20 / 351 (5.7)</td>
<td>18 / 341 (5.3)</td>
<td>1.07 (0.56–2.01)</td>
</tr>
<tr>
<td>65–69</td>
<td>31 / 422 (6.7)</td>
<td>18 / 422 (4.3)</td>
<td>1.61 (0.90–2.88)</td>
</tr>
<tr>
<td>70–74</td>
<td>58 / 436 (12.1)</td>
<td>26 / 436 (6.0)</td>
<td>2.09 (1.32–2.32)</td>
</tr>
<tr>
<td>75–79</td>
<td>48 / 403 (11.9)</td>
<td>30 / 461 (6.5)</td>
<td>1.91 (1.21–3.01)</td>
</tr>
<tr>
<td>>80</td>
<td>36 / 291 (12.4)</td>
<td>16 / 291 (5.5)</td>
<td>2.43 (1.35–4.38)</td>
</tr>
</tbody>
</table>

Data are presented as n (%) unless stated otherwise. HR = hazard ratio; CI = confidence interval.

* Age based HR calculation for CAS compared with CEA. If HR is < 1.0, CAS is associated with lower peri-operative death/stroke. If HR is > 1.0, CAS is associated with higher rates of peri-operative stroke or death.

† All HR age based calculations compared against age < 60 years.

between increasing age and higher 30 day death/stroke after CAS, but not CEA (Table 22).169 Compared with CEA (Table 22), CAS patients aged > 70 years incurred higher rates of death/stroke. Below 70 years, CAS had similar outcomes to CEA.

4.4.2. Long term outcomes

4.4.2.1. Late ipsilateral stroke. Excluding peri-operative risks, a CSTC meta-analysis of four RCTs showed that five year rates of ipsilateral stroke were 3.1% after CEA versus 3.2% after CAS (HR 1.06; 95% CI 0.73 – 1.54), giving an average annual ipsilateral stroke rate of 0.62% (CEA) and 0.64% (CAS). Nine year rates of ipsilateral stroke were 3.9% after CAS versus 4.5% after CAS, giving an average annual ipsilateral stroke rate of 0.43% after CEA and 0.5% after CAS.12 These data indicate that, as with ACS (section 3.8.2), CAS was as durable as CEA once the peri-operative period had elapsed. Accordingly, the decision to perform CEA or...
CAS will be largely determined by factors associated with increases in peri-operative stroke/death after CEA or CAS in individual patients (sections 7.1.1.3 and 7.1.2.1).

4.4.2.2. Quality of life. Health Related Quality of life was assessed in CREST.\(^{365}\) CAS patients had better quality of life in the post-operative period, especially physical limitation and pain (\(p = .010\)), but not at one year. Using disease specific scales, CAS patients reported fewer problems with driving, eating, swallowing, neck pain, and headache, but greater difficulty with walking and leg pain (\(p < .050\)). However, at one year, there was no difference. Peri-operative stroke was associated with poorer one year quality of life across all SF-36 domains, while peri-procedural MI and CNI were not.\(^{44} 591 6\)

4.4.2.3. Survival following peri-operative stroke or myocardial infarction. The relevance of peri-operative MI (especially non-ST elevation MI with troponin elevation) has been a source of controversy since its inclusion as a primary endpoint in SAPPHIRE and CREST.\(^{262,216}\) The rationale was that peri-operative MI and/or troponin elevation were associated with poorer long term survival after non-cardiac surgery.\(^{466}\) At 10 years, CREST patients having a peri-operative stroke had statistically significantly higher mortality compared with patients without peri-operative stroke (HR 1.74; 95% CI 1.21 — 2.5, \(p < .003\)).\(^{28}\) Compared with CREST patients who did not have a peri-operative stroke, reduced long term survival was mainly a result of deaths occurring in the first 90 days (HR 14.41; 95% CI 5.33 — 38.94, \(p < .001\)). Thereafter, there was a non-significant trend towards increased mortality between 91 days and 10 years (HR 1.40; 95% CI 0.93 — 2.10). CREST patients with a peri-operative MI had statistically significantly higher mortality at 10 years compared with patients without peri-operative MI (HR 3.61; 95% CI 2.28 — 5.73, \(p = .006\)).\(^{28}\) Increased mortality in CREST patients with a peri-operative MI continued through the first 90 days (HR 8.2; 95% CI 1.86 — 36.2, \(p < .001\)) and from day 91 to 10 years (HR 3.4; 95% CI 2.09 — 5.53, \(p < .001\)).\(^{28}\)

Accordingly, peri-operative stroke and MI are associated with poorer long term survival, emphasising the importance of careful patient selection and optimisation of pre-operative BMT. ESC/European Society of Anaesthesiology guidelines currently do not recommend routine pre- and post-operative troponin measurement in patients undergoing CEA or CAS.\(^{367}\) However, patients with post-operative MI or stroke should be evaluated carefully before discharge. Cardiology review is necessary after a documented MI or where troponin levels have been requested (on clinical grounds) and found to be elevated, as intensification of BMT before discharge (defined as compliance with ESC recommendations for the management of chronic coronary syndromes\(^{468}\)) prevents major recurrent cardiac events. Patients with troponin elevation and no post-operative intensification of BMT are statistically significantly more likely to suffer major cardiac events at 12 months versus patients receiving intensified BMT (HR 2.8; 95% CI 1.05 — 24.2, \(p = .040\)).\(^{369}\)

4.5. Timing of carotid interventions after onset of symptoms

4.5.1. Risk of recurrent stroke over time. CEA is sometimes delayed in SCS patients because it was believed that this may reduce procedural risks,\(^{270}\) although deferral is advised in patients with disabling stroke (section 4.7). However, there is good evidence that CEA confers maximum benefit if performed within 14 days of symptom onset.\(^{357–359}\) There is also evidence that the risk of early, recurrent stroke after TIA may be higher than previously thought. Natural history studies suggest the incidence of recurrent stroke after a TIA range from 5% to 8% at 48 hours, 4% to 17% at 72 hours, 8% to 22% at seven days, and 11% to 25% at 14 days (Table 23). Recurrent stroke rates at 14 days in the natural history studies are much higher than was reported at five years in BMT patients in ECST, NASCET, and SVACS, suggesting that many SCS patients who were destined to suffer an early recurrent stroke were never randomised within the RCTs (which tended to recruit patients somewhat later).

However, early recurrent stroke in a CSTC meta-analysis of four RCTs (4 754 SCS patients randomised to and then

| Table 23. Risk of stroke in the early-time-period after transient ischaemic attack (TIA) onset in patients with 50—99% symptomatic carotid stenosis |
|-------------|--------|---------|----------|--------|----------|--------|--------|--------|--------|
| Study | Patients \(-n\) | Stroke risk after TIA \(-\%\) | 48 h | 72 h | 7 d | 14 d | 5 y |
| ECST+NASCET+VA ‘BMT’ patients \(^{238}\) | 1 227 | 21 |
| Fairhead \(^{371}\) | 85 | 20 |
| Purroy \(^{372}\) | 90 | 10 |
| Ois \(^{373}\) | 163 | 17 |
| Bonifati \(^{374}\) | 36 | 8 |
| Johansson \(^{375}\) | 230 | 5 |
| Mono \(^{376}\) | 94 | 4 |
| Merwick \(^{377}\) | 387 | 8 |
| Marnane \(^{378}\) | 44 | 5 |

NASCET = North American Symptomatic Carotid Endarterectomy Trial; VA = Symptomatic Veterans Affairs Carotid Study; ECST = European Carotid Surgery Trial; BMT = best medical therapy; SCS = symptomatic carotid stenosis.

\(^{*}\) Timing relates to time from randomisation.

\(^{†}\) Timing relates to time from TIA onset.

awaiting CEA/CAS) were compared with early recurrent stroke in three older RCTs which randomised patients to CEA or BMT.16 Recurrent stroke in the more recent RCTs was only 2% at 120 days, which is much lower than in the older RCTs (Table 19) and in observational studies (Table 23). CSTD observed that while improvements in BMT, risk factor control, and lifestyle may have contributed to reduced early stroke risks in the modern era, RCTs may include patient populations with lower risks of stroke compared with observational cohorts. Accordingly, CSTD concluded that it remained advisable to adhere to recommendations supporting early revascularisation in SCS patients.16 Other potential reasons for the apparent decline in early stroke after TIA/stroke onset in more recent RCTs include the absence of data on consecutive cases (all of the RCTs in Fisch’s meta-analysis included patients already scheduled for CEA or CAS15) and early neurological deterioration after the index TIA being missed and, therefore, not reported.379 Natural history studies suggest that rapid institution of BMT after TIA/minor stroke reduces early recurrent stroke, suggesting that emergency carotid interventions are probably unnecessary unless the patient reports crescendo TIAs or stroke in evolution (section 4.7).144,308,328

4.5.2. Timing of carotid endarterectomy in national registries and meta-analyses. Five national registries have published median delays from symptom onset to CEA. In the Netherlands, Norway, and UK, median delay is 11 days,340,341,380 compared with nine days in Germany381 and eight in Sweden.382 Three European countries have published more detailed registry data regarding delays between symptom onset and undergoing CEA (Table 24).

Table 24. Proportion of patients undergoing carotid endarterectomy (CEA) in national audits within 0–2, 3–7, 8–14, and >15 days after onset of symptoms caused by symptomatic carotid stenosis (SCS)

<table>
<thead>
<tr>
<th>National audit</th>
<th>Patients – n</th>
<th>Patients undergoing CEA after SCS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0–2 d</td>
</tr>
<tr>
<td>Sweden382</td>
<td>2 596</td>
<td>148 (6)</td>
</tr>
<tr>
<td>UK380</td>
<td>23 235</td>
<td>780 (3)</td>
</tr>
<tr>
<td>Germany381</td>
<td>56 279</td>
<td>5 198 (9)</td>
</tr>
</tbody>
</table>

Data are presented as n (%) unless stated otherwise.

Table 25. Thirty day death or stroke after carotid endarterectomy (CEA), stratified for delay from onset of symptoms caused by symptomatic carotid stenosis (SCS)

<table>
<thead>
<tr>
<th>National audit</th>
<th>Patients – n</th>
<th>30 d death or stroke after CEA for SCS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0–2 d</td>
</tr>
<tr>
<td>Sweden382</td>
<td>2 596</td>
<td>17 / 148 (11.5)</td>
</tr>
<tr>
<td>UK380</td>
<td>23 235</td>
<td>29 / 780 (3.7)</td>
</tr>
<tr>
<td>Germany381</td>
<td>56 279</td>
<td>157 / 5 198 (3.0)</td>
</tr>
</tbody>
</table>

Data are presented as n (%) [95% confidence interval].
within two days was not associated with increases in 30 day stroke (OR 1.36; 95% CI 0.84 – 2.04), but there was a substantially higher risk of death (OR 2.77; 95% CI 1.39 – 5.52). Two studies compared outcomes when CAS was performed within seven days versus 8–14 days. CAS was associated with higher rates of 30 day stroke (OR 1.8; 95% CI 1.14 – 2.84) if performed within seven days (vs. 8–14 days) after the index event, with no difference in mortality rate (OR 1.70; 95% CI 0.78 – 3.73).

4.5.4. Comparison of carotid endarterectomy with carotid artery stenting in the early time period after symptom onset. In a CSTC meta-analysis involving 4138 SCS patients randomised in CREST, ICSS, EVA-3S, and SPACE, only 11% underwent CEA or CAS within 48 hours of symptom onset. Among patients treated within seven days of symptom onset, patients undergoing TFCAS were more likely to suffer an adverse 30 day outcome, compared with patients undergoing CEA (Table 28).

CSTC concluded that for patients undergoing carotid interventions within seven days of symptom onset, CEA was safer than TFCAS. In another CSTC meta-analysis, patients undergoing TFCAS within 8–14 days of their most recent symptom also had statistically significantly higher rates of 30 day death/stroke, at 8.1% compared with 3.4% after CEA (OR 2.42; 95% CI 1.0 – 5.7, p = .040). There has been considerable interest in whether TCAR confers lower procedural risks when performed < 14 days after symptom onset, versus TFCAS. Only one registry has reported procedural risks after TCAR, stratified for timing after symptom onset. In an SVS-VQI audit involving 2 608 SCS patients

<table>
<thead>
<tr>
<th>National audit</th>
<th>Procedural death or stroke after CAS for SCS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0–2 d</td>
</tr>
<tr>
<td>Sweden</td>
<td>0 / 13 (0.0)</td>
</tr>
<tr>
<td>Germany</td>
<td>33 / 550 (6.0)</td>
</tr>
</tbody>
</table>

Data are presented as n (%).

* Thirty day death/stroke.
† In hospital death/stroke.

Table 26. Proportion of patients undergoing carotid artery stenting (CAS) in national audits within 0 – 2, 3 – 7, 8 – 14, and ≥ 15 days after onset of symptoms caused by symptomatic carotid stenosis (SCS)

<table>
<thead>
<tr>
<th>National audit</th>
<th>Patients – n</th>
<th>Patients undergoing CAS after SCS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0–2 d</td>
</tr>
<tr>
<td>Sweden</td>
<td>323</td>
<td>13 (4.0)</td>
</tr>
<tr>
<td>Germany</td>
<td>4 717</td>
<td>550 (11.6)</td>
</tr>
</tbody>
</table>

Data are presented as n (%).
treated by TCAR, 5.5% were performed within two days of the most recent symptom, 35% at 3 – 14 days, while 59% were performed after > 14 days had elapsed. In hospital outcomes are detailed in Table 29. These suggest that in hospital stroke and death/stroke were higher when TCAR was performed within two days of the most recent symptom, while TCAR performed 3 – 14 days after the most recent symptom incurred procedural risks similar to when performed after > 15 days had elapsed. The only statistically significant difference was that patients undergoing TCAR within 14 days were more likely to be discharged to a non-home destination (22% vs. 6.6%; OR 4.2, 95% CI 3.2 – 5.5, p < .001).118 These findings are, however, similar to in hospital outcomes reported after TFCAS in the German Statutory Quality Assurance database (Table 27).156

More prospective audits are required to corroborate the SVS-VQI data which are otherwise encouraging. However, 1 169 SCS patients (31%) undergoing TCAR in the SVS-VQI audit did not meet the inclusion criteria, including an unknown proportion with no timing data available. In addition, in hospital endpoints underestimate 30 day procedural risks by 20 – 25%.385,386 making direct comparison with 30 day outcomes after TFCAS or CEA less robust.

4.6. Should the 6% risk threshold for carotid interventions be reduced?

Guidelines since 1998 advise that the 30 day risk of stroke/death when performing CEA in patients reporting ipsilateral carotid territory symptoms of less than six months should be 6% or less,283 and that this should be independently audited (section 2.6). Recent German-Austrian and ESO guidelines advise that in hospital death/stroke following CEA/CAS in SCS patients should be 4% or less.23,2 However, this does not mean that the 30 day 6% threshold in SCS patients is being reduced. As with ACS patients (section 3.9), it is more an attempt to define acceptable risk thresholds while the patient is still in hospital (i.e., easier to audit). RCTs suggest that 19 – 24% of peri-operative strokes and deaths occur after the eighth post-operative day,286 which effectively means the 6% 30 day death/stroke threshold has still been retained by the two guidelines.

One important change in practice over the last 15 years has been awareness that the highest risk period for recurrent stroke is the first 7 – 14 days after symptom onset (section 4.5.1). Previously, provided CEA was performed within six months of symptom onset, a 6% procedural risk was considered appropriate.283 However, there have been concerns that intervening early in SCS patients might increase peri-procedural risks,370 which could potentially negate any benefits regarding prevention of early recurrent stroke. However, a re-analysis of data from NASCET, ECST, and SVACS revealed that even if a surgeon performed CEA within 14 days with a 10% peri-operative risk, more strokes would probably be prevented at five years, compared with delaying CEA for four weeks and then by operating with a theoretical risk of 0%.387 Many countries have reconfigured their services to deliver CEA as soon as possible after symptom onset (section 4.5.2). The GWC recognised the importance of promoting early interventions and that most CEAs in Europe are now performed within 7 – 14 days of symptom onset. The GWC concluded that the 30 day risk of stroke/death after CEA or CAS in recently symptomatic patients should be retained at 6% or less, mainly to minimise risk aversion, where surgeons or interventionists might delay interventions to achieve lower complication rates. Such delays could, in turn, lead to increased rates of early recurrent stroke in SCS patients.

Recommendation 40 Unchanged

For patients reporting carotid territory symptoms within the preceding six months and who have a 70 – 99% carotid stenosis, carotid endarterectomy is recommended provided the 30 day risk of death/stroke rate is <6%.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
</table>

Recommendation 41 Unchanged

For patients reporting carotid territory symptoms within the preceding six months and who have a 50 – 69% carotid stenosis, carotid endarterectomy should be considered provided the documented 30 day risk of death/stroke rate is <6%.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
</table>

Table 29. In hospital rates of stroke and death/stroke in 2 608 patients undergoing transcarotid artery revascularisation (TCAR), stratified for timing after most recent neurological event caused by symptomatic carotid stenosis

<table>
<thead>
<tr>
<th></th>
<th><2 days (n = 144)</th>
<th>3 – 14 days (n = 928)</th>
<th>>14 days (n = 1 536)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In hospital stroke – %</td>
<td>5.6</td>
<td>2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>OR (95% CI)</td>
<td>2.8 (1.3 – 6.2)</td>
<td>1.3 (1.3 – 6.4)</td>
<td>Reference</td>
</tr>
<tr>
<td>p value</td>
<td>.01</td>
<td>.40</td>
<td></td>
</tr>
<tr>
<td>In hospital stroke or death – %</td>
<td>6.5</td>
<td>6.0</td>
<td>2.3†</td>
</tr>
<tr>
<td>OR (95% CI)</td>
<td>2.9 (1.3 – 6.4)</td>
<td>1.2 (0.7 – 2.1)</td>
<td>Reference</td>
</tr>
<tr>
<td>p value</td>
<td>.01</td>
<td>.48</td>
<td></td>
</tr>
</tbody>
</table>

OR = odds ratio; CI = confidence interval; TCAR = transcarotid artery revascularisation.
† OR (95% CI) calculated by comparing outcomes against those performed >14 days.

In the absence of quality evidence, it would be reasonable to consider heparin (plus aspirin) or combination APRx in patients with recurrent TIA
to minimize the risks of post-operative parenchymal haemorrhage.

Recommendation 47 Unchanged

For patients with 50–99% stenoses who present with stroke in evolution or crescendo transient ischaemic attacks, urgent carotid endarterectomy should be considered, preferably within 24 hours.

Class Level References ToE

4.7. Intervening in neurologically unstable patients

Patients with a disabling stroke (mRS ≥ 3), or where the area of infarction exceeds one third of the MCA territory and those with altered consciousness should not undergo CEA/CAS until neurological improvement has occurred, because of higher risks of haemorrhagic transformation of an infarct.388,389 Larger areas of acute cerebral infarction (pre-operatively) are recognised as being an important predictor of post-operative ICH and encephalopathy (infarct size per cm², adjusted OR 1.169; 95% CI 1.067 − 1.28, p = .001).390 A similar finding was reported by Pini et al.391 In a series of 489 recently symptomatic patients undergoing CEA, an acute cerebral ischaemic lesion volume ≥ 4 000 mm³ on pre-operative CT was predictive of post-operative stroke (OR 4.6; 95% CI 1.1 − 19.1, p = .03), with a sensitivity of 75% and a specificity of 63%.391

In a meta-analysis of 13 observational studies (n = 208), 30 day stroke/death after CEA was 20% (95% CI 12.0 − 28.4) in patients with stroke in evolution and 11% (95% CI 6.1 − 16.7) in patients with crescendo TIA.392 However, in selected patients with smaller infarcts, emergency CEA can be performed with 2–8% rates of death/stroke for stroke in evolution and 0–2% for crescendo TIA. These results compare favourably with the otherwise poor prognosis of these conditions. ESVS recommendations in patients with crescendo TIA or stroke in evolution are the same as the 2021 SVS and German-Austrian guidelines.3,4 There are no RCT data to advise whether i.v. heparin is superior to APRx in preventing early recurrent stroke in patients with stroke in evolution or crescendo TIs. In a series of 144 patients with non-disabling stroke, a 50–99% stenosis, and TCD evidence of MES, spontaneous MES rates were reduced in patients on APRx, but not heparin.395 In two RCTs comparing LMWH with aspirin monotherapy in acute stroke patients where APRx or antithrombotic therapy were commenced < 48 hours after stroke onset, there was no evidence that LMWH conferred additional benefits over aspirin.396,397 In the absence of quality evidence, it would seem reasonable to consider heparin (plus aspirin) or combination APRx in patients with recurrent TIA or crescendo TIA prior to urgent CEA.

4.8. Timing of carotid endarterectomy and carotid artery stenting after intravenous thrombolytic therapy

In the absence of advanced imaging techniques, i.e. thrombolytic therapy (TT) is recommended in selected patients with acute ischaemic stroke, provided it is started within 4.5 hours of stroke onset in patients awake at symptom onset. About 10—20% of TT patients will have an underlying 50—99% ICA stenosis and may be candidates for CEA or CAS. There are concerns, however, that performing CEA or CAS too soon after TT may increase the likelihood of haemorrhagic transformation of an infarct or neck haematoma formation, with consequent harm to the patient. To balance the risks of early recurrent stroke prevention with the higher risks of ICH, general criteria for selecting patients for early CEA after TT include (1) rapid neurological recovery (mRS 0—2); (2) infarction area less than one third the MCA territory; (3) recanalisation of a previously occluded MCA mainstem on repeat CTA; (4) ipsilateral 50—99% stenosis; and (5) no evidence of parenchymal haemorrhage or significant brain oedema.

Contraindications include (1) severe persistent neurological deficit (modified Rankin score ≥ 3); (2) anticipated high surgical risk; (3) parenchymal haemorrhage on CT; and (4) previous radical neck dissection or radiotherapy. A systematic review identified 25 observational studies (n = 147 810 patients), including 2 557 who underwent CEA (n = 2 076) or CAS (n = 481) after TT. Table 30 details peri-operative outcomes in pooled series.

Table 30 details meta-analysed case controlled data comparing peri-operative outcomes in CEA and CAS patients who did (did not) receive TT. TT was associated with higher rates of ICH and neck haematoma in patients undergoing CEA (vs. no TT), while TT was associated with higher stroke/death and ICH in patients undergoing CAS (vs. no TT).

Thrombolysis is associated with complex haematological changes that may make CEA and CAS patients prone to ICH or neck haematoma formation. The half life of i.v. recombinant tissue plasminogen activator (rtPA) is five minutes (Tenecteplase 24 minutes), but fibrinogen and plasminogen levels only revert to > 80% of pre-TT levels ≥ 24 hours after rtPA treatment. Recombinant tPA increases circulating fibrin degradation products and levels > 200 mg/L may be associated with a fivefold increase in parenchymal haemorrhage, as well as increased permeability across the blood brain barrier (which increases parenchymal haemorrhage). Vulnerability to haemorrhagic complications after TT will also be compounded by peri-operative APRx and heparin therapy. Guidelines advise that heparin and APRx should be withheld for 24 hours after TT completion and only restarted once a 24 hour CT scan shows no haemorrhagic transformation, after which appropriate APRx can be (re-)commenced before CEA or CAS. The optimal timing of carotid interventions after TT remains controversial. A US National Inpatient Sample reported higher rates of post-operative stroke and ICH if CEA was performed early after TT, which then declined to levels comparable with those in non-TT patients by seven days after TT completion. By contrast, the UK National Vascular Registry reported no association between CEA timing after TT and procedural risks. Meta-regression analyses of published data demonstrated an inverse relationship between the time interval between TT and CEA and the risk of peri-operative stroke/death (p = .020); that is, performing CEA early after TT was associated with higher risks of peri-procedural stroke/death.

Using meta-regression analysis (Figure 7), peri-operative stroke/death was 13% when CEA was performed three days after TT completion and 10.6% after four days. The risk was predicted to reduce to within the currently accepted 6% threshold after six days had elapsed, suggesting that CEA should probably be deferred until six days after TT. Unfortunately, there were insufficient case control studies to permit similar analyses in CAS patients, but given the data in Tables 30 and 31, a similar deferral would seem reasonable.

A short deferral permits repeat DUS/CTA imaging to ensure criteria for expedited CEA or CAS have been met (see earlier), and for heparin and APRx to be withheld for 24 hours, before restarting prior to any intervention. However, one potentially adverse consequence of deferring CEA (even for a short time) is recurrent thromboembolic stroke, which is rarely reported in the literature. In a Finnish study (n = 128), the risk of recurrent stroke between TT and undergoing CEA was 5.5% when performed a median of four days after TT (range 0—8). This is lower than the predicted 10.6% risk associated with performing CEA four days after TT in the meta-regression analysis. Recurrent stroke before deferred CEA in TT patients should be the subject of future audit, which should also include whether the presence/absence of acute infarction influences rates of ICH, to better stratify advice regarding deferral in individual patients as some vascular surgeons and physicians may still opt to proceed to CEA in selected patients less than six days after TT. It is also essential to actively treat post-CEA/CAS hypertension (section 7.1.3.3) as poorly controlled BP is a risk factor for ICH and neck haematoma formation. To date, no other guideline has made any recommendation regarding the optimal timing of carotid interventions after thrombolysis.

Table 30. Peri-operative outcomes in pooled series undergoing carotid endarterectomy (CEA) or carotid artery stenting (CAS) after intravenous thrombolysis therapy for patients with acute ischaemic stroke

<table>
<thead>
<tr>
<th>Outcome</th>
<th>CEA (n = 2 076)</th>
<th>CAS (n = 481)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke or death</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(95% CI) — %</td>
<td>5.2 (3.3—7.5)</td>
<td>14.9 (11.9—18.2)</td>
</tr>
<tr>
<td>ICH (95% CI) — %</td>
<td>3.4 (1.7—5.6)</td>
<td>5.5 (3.7—7.7)</td>
</tr>
<tr>
<td>Haemorrhage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(95% CI) — %</td>
<td>Neck: 3.8</td>
<td>Local: 4.9 (0.09—16.2)</td>
</tr>
<tr>
<td></td>
<td>(2.9—4.9)</td>
<td></td>
</tr>
</tbody>
</table>

CI = confidence interval; ICH = intracranial haemorrhage.

* Data derived from Kakkos.

Table 31. Peri-operative outcomes for case control studies in carotid endarterectomy (CEA) and carotid artery stenting (CAS) patients who did or did not have intravenous thrombolysis therapy for acute ischaemic stroke

<table>
<thead>
<tr>
<th>Outcome</th>
<th>CEA</th>
<th>CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TT – %</td>
<td>No TT – %</td>
</tr>
<tr>
<td>Stroke</td>
<td>4.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Death</td>
<td>2.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Stroke / death</td>
<td>4.3</td>
<td>1.5</td>
</tr>
<tr>
<td>Intracranial haemorrhage</td>
<td>2.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Neck haematoma</td>
<td>3.6</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Data derived from Kakkos et al.66 OR = odds ratio; CI = confidence interval.

Recommendation 48 Unchanged

For symptomatic patients undergoing thrombolysis, it is recommended that intravenous heparin and antiplatelet therapy be withheld for 24 hours after completion of thrombolysis, but antiplatelet therapy should then be commenced before any carotid intervention is undertaken.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>C</td>
<td>Berge et al. (2021)695</td>
<td></td>
</tr>
</tbody>
</table>

Recommendation 49 New

For patients with acute ischaemic stroke due to a symptomatic 50–99% carotid stenosis who have received intravenous thrombolysis, delaying carotid endarterectomy or carotid stenting by six days following completion of thrombolysis should be considered.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIa</td>
<td>B</td>
<td>Kakkos et al. (2021) 696, Vellimana et al. (2018) 157</td>
<td></td>
</tr>
</tbody>
</table>

4.9. Carotid endarterectomy and carotid artery stenting after mechanical thrombectomy

Based on a meta-analysis of five RCTs (n = 1 287), which showed that MT conferred a twofold improvement in functional outcome,407 guidelines recommend emergency MT in selected patients with acute ischaemic stroke.398 About 10–20% of MT patients will have embolic MCA occlusion with tandem ICA thrombosis or severe stenosis.61 Treatment options include (i) synchronous MT + CAS with APRx; (ii) synchronous MT + CAS with no APRx; (iii) synchronous MT + angioplasty (no stent, no APRx); and (iv) MT +/- deferred CEA/CAS. The TITAN registry evaluated all four treatment strategies in 482 patients.163 After adjusting for confounding variables, CAS + MT + APRx was independently associated with higher rates of recanalisation, although rates of symptomatic ICH and mortality were similar across all four strategies.164,408 The German Stroke Registry recently reported outcomes in 874 MT patients with tandem carotid stenosis or thrombosis, including 607 (69.5%) who underwent synchronous treatment of the extracranial carotid lesion. Synchronous MT + CAS was associated with a higher probability of successful reperfusion versus MT alone (OR 40.63; 95% CI 30.3–70.06), as well as statistically significantly better clinical outcomes (39.5% vs. 29.3%; p < .001) and lower mortality rates (17.1% vs. 27.1%; p < .001). MT + CAS was associated with similar complication rates to those in patients undergoing MT alone (23.9% vs. 18.1%, p = ns).124

There is, however, no consensus and a survey of clinicians treating acute stroke patients reported that 59% would perform MT + CAS, while 41% would not.399 While awaiting data from the TITAN RCT (ClinicalTrials.gov Identifier: NCT03978988), imaging features that might support performing synchronous MT + CAS include poor antegrade ICA
flow after MT; poor collateralisation via the CoW after MT and patients with small volume infarcts and lower bleeding risks. Imaging features suggesting that emergency CAS is probably unnecessary (could be deferred) include poor intracranial revascularisation after MT, good filling of ipsilateral intracranial vessels via the VAs and/or contralateral ICA after MT, large volume infarcts and patients at increased bleeding risk.

If synchronous CAS + MT is being considered, should the intervention be intracranial first or extracranial first? Advantages of extracranial first include (i) early flow restoration to the CoW (simply crossing an occluded or stenosed ICA with a large bore catheter can permit sufficient inflow to avoid CAS); (ii) optimisation of endogenous fibrinolysis by increased intracranial flow; (iii) elimination of a proximal embolic source; (iv) avoiding blind navigation in occluded vessels; and (v) reduced risk of re-occluding intracranial vessels. Disadvantages include embolisation during CAS, worsening of any neurological deficit and delay in recanalising intracranial occlusions. A meta-analysis found no difference in either approach regarding mRS scores, procedural complications, symptomatic ICH, revascularisation rates, or procedure times, although the German Stroke Registry reported statistically significantly shorter flow restoration times with an intracranial first strategy (53 minutes vs. 72 minutes, p < .001). Few registries have reported outcomes following staged CEA after MT. In an audit of 63 consecutive cases from Sweden and Finland, 30 day death/stroke was 0.0%. Carotid endarterectomy was performed a median of seven days after presentation and 75% of patients underwent CEA in < 14 days.

Similarly, there is no consensus regarding optimal APRx and antithrombotic therapy during MT + CAS. CAS mandates peri-procedural APRx (usually combination), which increases the risk of ICH, especially if the patient has also been thrombolysed (common). Conversely, CAS without APRx increases in stent thrombosis, while CA (without stenting) risks secondary embolisation of atherothrombotic debris. Combination APRx usually starts after a post-operative CT scan excludes parenchymal haemorrhage. Combining glycoprotein IIb/IIIa inhibitors and combination APRx provides better stent patency, but with increased ICH risks. A Delphi consensus reported a preference for aspirin monotherapy (or IIb/IIIa receptor inhibitor) during CAS, with combination aspirin plus a P2Y12 inhibitor started post-operatively, although this has not been tested in RCTs. Another study showed that heparin doses > 3 000 IU were only associated with higher bleeding risks when the ASPECTS score was ≤ 7 (indicating a large ischaemic core) and with more than one passage of the MT catheter.

Although knowledge has increased since 2017, there is no consensus regarding the optimal strategy for treating acute stroke patients undergoing MT who have tandem extracranial stenoses, and few contemporary guidelines have published any recommendations. The 2021 German-Austrian guidelines, however, advise that endovascular treatment with emergency stenting and thrombectomy is indicated.

4.10. Patients with < 50% stenoses who may benefit from interventions

In a CETC meta-analysis, CEA conferred no benefit over BMT in patients with < 50% stenoses (Table 19). However, the risk of recurrent ipsilateral stroke in patients with 20–49% stenoses at baseline (and treated medically) is about 7.4% at three years. In previously symptomatic patients with < 50% stenosis who experience recurrent TIA/stroke (despite BMT), it is essential to exclude other causes of recurrent symptoms (e.g., paroxysmal AF, antiphospholipid syndrome) that would warrant different secondary preventive therapy. If symptoms recur despite optimisation of BMT, it may be reasonable to consider CEA but only following detailed neurovascular work up and MDT review.

4.11. ‘High risk for surgery’ symptomatic patients

Certain clinical or anatomical features may be associated with poorer outcomes after CEA and are described as ‘high risk for CEA’ criteria. However, being high risk for CEA does not mean that superior outcomes are achieved by CAS as, sometimes, procedural risks may be higher. The concept of being ‘high risk for CEA’ is also misinterpreted as being high risk of stroke, which is rarely the case. As will be seen, many studies regarding ‘high risk for CEA’ criteria are conflicting.
4.11.1. SAPPHIRE defined high risk criteria. In SAPPHIRE, ‘high risk for CEA’ criteria included carotid territory symptoms within 180 days and a 50–99% stenosis plus more than one of: major cardiac disease (CHF, abnormal stress test, awaiting cardiac surgery); severe COPD; contralateral occlusion; contralateral RLN palsy; previous radical neck surgery, cervical irradiation; re-stenosis after CEA; and age > 80 years.282 In an SVS Registry, SAPPHIRE ‘high risk for CEA’ patients had similar rates of death/stroke/MI after CAS and CEA (9.1% vs. 7.3%; \(p = .11 \)). No anatomical criteria were associated with poorer outcomes after CEA and there was only a trend towards lower rates of major adverse events after CAS in patients with re-stenosis after CEA (3.5% vs. 7.1%; \(p = .10 \)).418 VSGNE reported independent risk factors for increased stroke/MI/death one year after CEA as increasing age, pre-admission residence in a nursing home, CHF, DM, COPD, previous stroke/TIA, and contralateral occlusion. Three SAPPHIRE criteria (abnormal stress test, re-stenosis, and cervical irradiation) were not associated with increased morbidity/mortality.419 Another retrospective study compared 424 ‘high risk for CEA’ patients (173 with at least one physiological high risk criterion; 293 with at least one anatomical risk criterion) with 424 propensity matched patients with no high risk criteria. There were no notable differences in 30 day death/stroke/MI after CEA.420

4.11.2. Increasing age. CSTC169 reported that age ≥ 70 years was associated with higher peri-operative stroke rates after CAS, but not CEA (Table 22, section 4.4.1.1), possibly because of increased atherosclerotic burden, aortic arch calcification, changes in vascular anatomy, and increasing plaque vulnerability.421

4.11.3. Cervical irradiation. Cervical irradiation is cited as conferring poorer outcomes after CEA. However, in a systematic review of 27 observational studies (533 CAS or CEA patients), the risk of “any cerebrovascular event” was 3.9% with CAS versus 3.5% after CEA (\(p = .77 \)).422 CNIs after CEA was 9.2% versus 0% after CAS, although few were permanent. After the peri-operative period, recurrent TIA/stroke was more common after CAS than after CEA (4.9/100 vs. 2.8/100 person years; \(p = .014 \)).422

4.11.4. Re-stenosis after carotid endarterectomy. In an SVS-VQI registry involving 2 863 patients (33% ACS) undergoing redo CEA (\(n = 1 047 \)) or CAS (\(n = 1 816 \)) for re-stenosis after CEA, redo-CEA was associated with a higher mortality rate at 30 days (OR 2.83; 95% CI 1.13 – 7.14, \(p = .027 \)) and at one year (HR 2.17; 95% CI 1.03 – 4.58, \(p = .042 \)). However, there were no differences in peri-operative stroke (OR 0.54; 95% CI 0.20 – 1.45, \(p = .22 \)) or MI (OR 0.98; 95% CI 0.31 – 3.10, \(p = .97 \)).15 A 2018 meta-analysis involving 13 observational studies (redo CEA = 1 678; CAS = 2 485) reported no difference in 30 day MI (OR 1.32; 95% CI 0.71 – 2.44), mortality (OR 1.82; 95% CI 0.94 – 3.53), or stroke (OR 1.28; 95% CI 0.82 – 2.00). CNIs were higher after redo CEA (OR 13.61; 95% CI 5.43 – 34.16).102

4.11.5. Contralateral carotid occlusion. Contralateral occlusion is another frequently cited ‘high risk for CEA’ criterion,282,318 although data are conflicting. A meta-analysis of 43 RCTs or observational studies (\(n = 96 658 \)) observed that contralateral occlusion was associated with a statistically significant increase in peri-operative stroke/death after CEA (OR 1.8; 95% CI 1.55 – 2.1, \(p < .001 \)) but not after CAS (OR 1.52; 95% CI 0.95 – 2.44).423 By contrast, an SVS-VQI registry of patients with contralateral occlusion treated by CEA (\(n = 3 278 \)) or CAS (\(n = 1 048 \)) found that in ACS patients, 30 day death/stroke and two year ipsilateral stroke rates did not differ statistically significantly between CAS and CEA, but the adjusted risk of any stroke/death over two years was statistically significantly higher after CAS (adjusted HR 1.42; 95% CI 1.08 – 1.86, \(p = .011 \)). In SCS patients, CAS was associated with statistically significantly higher 30 day risks of stroke (OR 2.90; 95% CI 1.06 – 7.94, \(p = .038 \)) and death (OR 6.10; 95% CI 2.20 – 16.92, \(p = .001 \)). The two year risk of stroke after intervening in SCS patients was also statistically significantly higher after CAS versus CEA (adjusted HR 1.94; 95% CI 1.18 – 3.19, \(p = .009 \)).151

Recommendation 54

For recently symptomatic patients with 50–99% stenoses and contralateral carotid occlusion or previous cervical radiation therapy, the choice of carotid endarterectomy or carotid artery stenting should be considered on an individual basis.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIA</td>
<td>3</td>
<td>Kokkinidis et al. (2020)46, Nejim et al. (2017)451, Fokkema et al. (2012)492</td>
</tr>
</tbody>
</table>

Recommendation 55

For recently symptomatic patients with 50–99% stenoses with anatomical features or co-morbidities that are considered by the multidisciplinary team to be higher risk for carotid endarterectomy, carotid stenting should be considered as an alternative to endarterectomy, providing the documented 30 day risk of death/stroke is <6%.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
</table>

4.12. Managing patients with carotid “near occlusion”

The definition of CNO is covered in section 2.5. Of the 262 ECST and NASCET patients with CNO, 16 had total distal vessel collapse, while 246 had partial collapse. A CETC meta-analysis concluded that CEA conferred no notable reduction in stroke at five and eight years (Table 18, section 4.3.1), largely because of low rates of ipsilateral stroke in...
BMT patients. However (in NASCET), 33/114 CNO patients (29%) randomised to BMT subsequently underwent CEA but were analysed as BMT on intention to treat analyses. This high rate of crossover may have confounded meaningful data interpretation, leading to a possible underestimation of benefit conferred by CEA. CETC data and ESVS recommendations also led to CNO patients being excluded from RCTs of carotid interventions.

A meta-analysis (32 observational studies) included 703 patients with CNO. Thirty day death/stroke was 1.8% after CEA, 2.2% after CAS, and 4.9% with BMT. BMT was associated with higher 30 day death/stroke versus CEA (OR 5.63; 95% CI 1.3 – 24.45, p = .021). No differences were observed between CEA and CAS. One year freedom from stroke/death was 96% following CEA, 94% after CAS, and 81% with BMT. However, the number of adverse events was small, precluding robust statistical conclusions. A subsequent meta-analysis (26 studies, n = 1 506 patients) reported that the late risk of ipsilateral stroke, neurological/cardiac death, or MI was 4.26/100 patient years (95% CI 2.92 – 6.2) in CNO patients treated by CEA or CAS, and 13.3/100 patient years (95% CI 5.54 – 31.95) in patients treated medically (p < .001). However, only five studies directly compared outcomes in CNO patients undergoing CEA or CAS with BMT and found no statistically significant difference (HR 2.37; 95% CI 0.97 – 9.75, p = .23). Xue’s meta-analysis did not, however, report data regarding early or late ipsilateral stroke. There is also debate about the relevance of full or partial vessel collapse with CNO. CETC concluded that full collapse was associated with low stroke risks in BMT patients. However, a pooled analysis of two studies (n = 430) observed that 116 patients (27%) had evidence of CNO, with 47/116 having full distal vessel collapse, while 69 had partial collapse. The 28 day rate of ipsilateral stroke or central retinal artery occlusion was 27% in CNO patients with full collapse versus 11% in patients with partial collapse (p = .047). By contrast, a Spanish multicentre registry reported no outcome differences between full or partial collapse. In addition, while some centres have reported increased rates of post-operative ICH following CEA in patients with CNO and full distal vessel collapse, others have reported no substantial increase. In a single centre study involving 17 CNO patients with full vessel collapse and recurrent carotid territory symptoms (despite BMT), CEA was performed in 15, while two underwent carotid ligation and ECA endarterectomy. Post-operatively, 1/17 (5.8%) died from haemorrhagic stroke. During a median follow up of 23 months, one died of unknown causes at 90 days, but none of the remainder had recurrent TIA/stroke, suggesting that in selected CNO patients with full vessel collapse in whom BMT has failed, CEA may confer benefit. The 2021 SVS and AHA guidelines made no specific recommendations regarding the management of CNO. ESVS recommendations are similar to the 2021 German-Austrian guidelines.

4.13. Management of free floating thrombus

Free floating thrombus (FFT) is defined as elongated thrombus attached to the arterial wall with circumferential blood flow distally, and usually occurs on the surface of atherosclerotic plaques. FFT is more common in men (ratio 2 : 1, p < .001) and a substantial proportion (47%) are hypercoagulable because of thrombophilia, pregnancy, inflammatory, or infectious disease or cancer. Optimal management is unclear, with no RCTs to guide practice. In a meta-analysis of 58 case series and 83 case reports (n = 525), 345 patients were treated with “antithrombotic” or “interventional” methods, in whom 30 day death, TIA/stroke, or silent ischaemia on MRI was 17.1% (95% CI 13.1 – 21.1), with a 30 day rate of stroke/death of 11.1% (95% CI 7.7 – 14.3). These high event rates presumably reflect high rates of cerebral embolisation. In a Cox regression analysis of relatively poor data, neither anticoagulation versus no anticoagulation (HR 1.21; 95% CI 0.35 – 4.23, p = .76), nor interventions <3 days versus >3 days after symptom onset (HR 0.78; 95% CI 0.24 – 2.57, p = .69) were associated with different risks of silent ischaemia, TIA, or stroke/death at 30 days. However, patients with FFT undergoing thrombolysis had higher rates of silent ischaemia, TIA, or stroke/death (HR 14.79; 95% CI 3.41 – 64.25) p < .001). Endovascular thrombus aspiration and stent retriever thrombectomy with filter protection are alternatives to open surgery, but evidence regarding their safety and efficacy is lacking.

In the absence of better quality evidence, decision making is influenced by (i) probable aetiology (e.g., thrombophilia requiring anticoagulation), (ii) whether patients had recurrent events on pre-existing APRx or anticoagulation, (iii) interval since TIA/stroke onset, (iv) size of infarct, and (v) whether FFT is located at the carotid bifurcation (accessible) or extends towards the skull base (less accessible). Serial DUS/CTA/MRA can inform clinicians of

Recommendation 56

For symptomatic patients with carotid near occlusion and distal vessel collapse, carotid endarterectomy and carotid stenting are not recommended, unless as part of a randomised controlled trial.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>B</td>
<td>Rothschild et al. (2003)</td>
</tr>
</tbody>
</table>

Recommendation 57

For patients with carotid near occlusion and distal vessel collapse with recurrent carotid territory symptoms (despite best medical therapy), carotid endarterectomy or carotid artery stenting may be considered only after multidisciplinary team review.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIb</td>
<td>C</td>
<td>Meershoek et al. (2019), Xue et al. (2020), Garcia-Pastor et al. (2017), Meershoek et al. (2018)</td>
</tr>
</tbody>
</table>

responses to treatment. Selected patients with recurrent TIA/stroke on optimal anticoagulation therapy (with surgically or endovascularly accessible FFT) may be considered for thrombectomy (open or endovascular), preferably after MDT discussion. Acute stroke patients with FFT who received TT with i.v. rtPA should be monitored for signs of recurrent thromboembolism. The 2021 SVS, AHA, and ESO guidelines provide no advice about the management of symptomatic patients with FFT. The 2021 German-Austrian guidelines advise that (in selected patients) CEA or CAS should be performed within the first hours of the index event after consultation with stroke specialists.3

Recommendation 58

For patients presenting with recent carotid territory symptoms and evidence of free floating thrombus within the carotid artery, therapeutic anticoagulation is recommended.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>C</td>
<td>Bhatti et al. (2007)19, Fridman et al. (2019)54</td>
</tr>
</tbody>
</table>

Recommendation 59

For patients presenting with recent carotid territory symptoms and free floating thrombus who develop recurrent symptoms whilst receiving anticoagulation therapy, surgical or endovascular removal of the thrombus may be considered.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIb</td>
<td>C</td>
<td>Consensus</td>
</tr>
</tbody>
</table>

Recommendation 60

For patients presenting with recent carotid territory symptoms and evidence of free floating thrombus, intravenous thrombolysis is not recommended.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>C</td>
<td>Fridman et al. (2019)54</td>
</tr>
</tbody>
</table>

4.14. Management of carotid webs

A carotid web (CaW) is a ridge like filling defect in the posterior aspect of the carotid bulb and studies suggest it may be an intimal variant of fibromuscular dysplasia. Its incidence is unknown, but in non-selected patients with ischaemic stroke, the prevalence was 1.2% (0.7% ipsilateral).246 In a cohort of the Mr CLEAN RCT and registry (which randomised acute stroke patients to intra-arterial treatment plus usual care vs. usual care alone, see section 4.9), 30 / 3 439 (0.9%) patients with an anterior circulation stroke resulting from large vessel occlusion who had CTA of the carotid bifurcation and two years surveillance post-MT had CaW.24 In another cohort of 466 patients undergoing MT for large vessel occlusion stroke, 10.7% with embolic stroke of undetermined source had CaW versus 0.7% in those with a known source of embolism.427 Logistic regression analysis showed a statistically significant association between embolic stroke of undetermined source and ipsilateral CaW after adjusting for age, sex, and vascular risk factors (OR 12.5; 95% CI 2.1 — 71, p = .005).427

CaW may act as a pocket for thrombus accumulation and cerebral embolisation. Antiplatelet monotherapy may be insufficient to prevent recurrent events and there is no current evidence supporting anticoagulation.65,112 A systematic review identified 37 observational studies (n = 158). Median age was 46 years (range 16 — 85), 68% were female, and 76% were symptomatic. In the symptomatic cohort, 56% of those initially treated medically had recurrent stroke at a median of 12 months after symptom onset (range 0 — 97) and 72% ultimately underwent an intervention (50% CAS, 50% CEA).112 In the Mr CLEAN cohort, 1% of patients with anterior circulation stroke resulting from large vessel occlusion and no CaW had recurrent ipsilateral stroke by two years, versus 13% in CaW patients (adjusted HR 8.1; 95% CI 1.4 — 46.8).110 Treatment includes CAS or web resection plus patching or segmental resection and anastomosis. No guideline has made any recommendation regarding the optimal management of symptomatic patients with carotid webs, although the AHA identified it as an area warranting future research.1

4.15. Management of chronic ocular ischaemia syndrome

Chronic ocular ischaemia syndrome presents with progressive visual impairment/loss, with dilated conjunctival or episcleral vessels and narrowing of retinal arteries with or without dilated retinal veins.428 It is usually associated with 90—99% stenoses but has been reported with > 50% stenoses.249 Patients may develop pain as a result of elevated intra-ocular pressure and neovascular glaucoma, ruberosis iridis (coarse dilated vessels on the surface and stroma of the iris),310 or retinal haemorrhages from fragile retinal neovascularisation.429 Ocular ischaemia syndrome may also present with ipsilateral monocular blurring, dimming, or whiteout of vision in response to haemodynamic triggers or sudden bright lights due to low flow retinopathy.

Management requires expert ophthalmic treatment to limit neovascularisation and control elevated intra-ocular pressures and neovascular glaucoma, along with risk factor control and BMT (section 4.2). Carotid interventions can preserve visual acuity by limiting further ischaemia induced neovascularisation, which leads to worsening neovascular glaucoma or retinal haemorrhages. CEA may reverse...
Carotid revascularisation is less likely to improve visual acuity in 60%, with no change in 40%. Carotid revascularisation is less likely to improve visual acuity in patients with established neovascularisation related glaucoma due to severe ocular hypoperfusion, but treatment options have not been subject to randomised comparison. In a systematic review of 14 observational studies (n = 589), revascularisation led to increases in peak systolic velocity in the ipsilateral ophthalmic artery, with improvement in ocular ischaemic symptoms in 93%. No other international guidelines have provided any recommendations regarding the optimal management of ocular ischaemia syndrome.

<table>
<thead>
<tr>
<th>Recommendation 62</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>For patients with confirmed ocular ischaemia syndrome and a 50–99% ipsilateral carotid stenosis, carotid endarterectomy or carotid stenting should be considered to prevent further ischaemia induced retinal neovascularisation.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIA</td>
<td>C</td>
<td>Nana et al. (2021) 427, Kawaguchi et al. (2012) 428</td>
</tr>
</tbody>
</table>

4.16. Symptomatic patients with > 50% stenosis and atrial fibrillation

A 2021 meta-analysis (20 observational studies) reported that 12% of AF patients had a > 50% carotid stenosis, while in 25 observational studies, 9% of patients with > 50% carotid stenosis had AF. This suggests that about one in 10 patients with > 50% carotid stenosis will have AF and vice versa. Not all strokes in AF patients are cardioembolic. In six stroke registries (1,720 AF patients with acute ischaemic stroke), 14% were deemed atherothrombotic. Regarding long term stroke risk in AF patients with a 50—99% stenosis, the FIBStoke registry reported that at 3.5 years, the risk of stroke was 21.2% in patients with AF plus a > 50% carotid stenosis at baseline, versus 12.7% with AF alone (p = .005). After multivariable analysis, stenosis > 50% was an independent predictor of late stroke recurrence (HR 2.02; 95% CI 1.37 – 3.01, p = .001).

This highlights a conundrum as to whether patients presenting with a recent carotid territory TIA or ischaemic stroke with an ipsilateral 50–99% carotid stenosis and newly diagnosed or known AF should undergo carotid revascularisation followed by long term anticoagulation, or anticoagulation alone, without carotid revascularisation. There are no RCTs to guide practice (ECST, NASCET, ICSS, CREST excluded patients with a potential cardioembolic source) and a pragmatic approach is required. This is greatly aided by MDT involvement. Investigations should aim to determine whether the TIA/ischaemic stroke was probably cardioembolic (i.e., the carotid stenosis is asymptomatic and an urgent carotid intervention is unnecessary) or probably atherothrombotic (expedited carotid intervention appropriate, followed by post-operative anticoagulation). If it is not possible to determine the probable aetiology, TOAST would define these TIA/strokes as being of undetermined aetiology as there are two potential causes (section 2.3).

There are no definitive diagnostic tests for discriminating between cardioembolic or carotid sources of embolisation and management decisions will have to be based on probability, guided by access to basic or more complex investigative modalities. If CT/MRI shows acute ischaemia or infarction in additional territories (contralateral carotid or VB) other than the ipsilateral symptomatic carotid, then cardiac embolism is the likeliest cause. The patient should be anticoagulated, and the carotid stenosis treated as asymptomatic. Although ipsilateral carotid territory ischaemia/infarction supports a diagnosis of carotid embolism, cardiac embolism cannot be excluded. In this situation, centres with access to more complex neurovascular work up may be able to gain additional diagnostic information.

More complex imaging strategies might include T1 fat saturated MRI to look for IPH in the carotid plaque, which is associated with acutely symptomatic carotid plaques. Transoesophageal echocardiography can diagnose left atrial appendage thrombus or other cardiac sources of embolism. Transoesophageal echocardiography (plus bilateral TCD) with i.v. microbubble contrast media in conjunction with a Valsalva manoeuvre can diagnose a patent foramen ovale (suggesting paradoxical embolisation). Finally, 30 – 60 minutes of bilateral simultaneous TCD monitoring of both MCAs can diagnose spontaneous embolisation. In a series of 123 recently symptomatic patients with 50—99% stenoses, 40% of patients undergoing 30 minutes of TCD monitoring within seven days of TIA/stroke onset had ongoing ipsilateral MCA embolisation. Bilateral embolisation, however, suggests a cardioembolic source. To date, no guidelines have offered advice regarding the management of patients with recent carotid territory symptoms, an ipsilateral carotid stenosis, and AF.

Pragmatic decision making

1. **Acute ischaemia/infarction in multiple vascular territories suggests cardioembolism.** Patients should be anticoagulated, and the carotid stenosis considered asymptomatic.
2. **Acute ischaemia/infarction in the ipsilateral carotid territory is suggestive of a carotid source of embolism and (in some centres) this would be considered sufficient to recommend CEA/CAS.** However, this diagnosis can be made with greater certainty if supported by ipsilateral embolism on TCD, IPH in the ipsilateral carotid plaque, and no evidence of left atrial appendage thrombus.
3. **If a patient is anticoagulated (on the basis that cardioembolism was the likeliest aetiology) but then suffers recurrent event(s) in the territory ipsilateral to the 50—99% carotid stenosis while on therapeutic anticoagulation, it is reasonable to consider CEA or CAS (see section 4.2.6.3 for management of peri-operative anticoagulation).**
4. If investigations are neither diagnostic nor informative and more complex imaging is unavailable, the MDT will have to make an empirical management decision, following discussion of diagnostic uncertainties and potential implications with the patient.

Recommendation 63

For patients presenting with a transient ischaemic attack or minor ischaemic stroke in the presence of newly diagnosed or known atrial fibrillation and an ipsilateral 50–99% carotid stenosis, comprehensive neurovascular work up with multidisciplinary team review is recommended to determine whether urgent carotid revascularisation or anticoagulation alone is indicated.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Consensus</td>
<td>Consensus</td>
</tr>
</tbody>
</table>

Recommendation 64

For patients who have been started on anticoagulation (on the basis that cardiac embolism was considered the most likely cause of their transient ischaemic attack or stroke) but who then report recurrent event(s) in the territory ipsilateral to a 50–99% carotid stenosis whilst on therapeutic levels of anticoagulation, carotid endarterectomy or carotid artery stenting is recommended.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Consensus</td>
<td>Consensus</td>
</tr>
</tbody>
</table>

5. OPEN SURGICAL TECHNIQUES

5.1. Carotid endarterectomy

5.1.1. Pre-operative checklist. Responses to key questions should be documented in the casenotes prior to CEA. The aim is to minimise morbidity/mortality and lessen medicolegal censure. They include: Has the indication for CEA been documented? Are there atypical symptoms warranting further investigation? Is the degree of stenosis appropriate for CEA? Have procedural risks quoted to the patient been documented? Is the patient prescribed optimal BMT? Is high carotid disease possible? Are there pre-existing CNIs? Has the operation side been marked?

Four of these are particularly important: (i) Has the surgeon quoted their own procedural risks during the consent process, rather than RCT data? (ii) If the patient has previously undergone contralateral CEA, total/partial thyroidectomy, or radical neck surgery, indirect laryngoscopy must exclude contralateral RLN palsy as bilateral RLN palsies can be fatal (as can bilateral hypoglossal). If a contralateral vocal cord palsy is identified, the rationale for CEA must be reviewed. If the patient is asymptomatic, CEA should be cancelled, and CAS considered (if still deemed appropriate). If the patient is symptomatic, CAS should still be considered. If it is not possible to safely perform CAS and the indication for intervening is compelling, the patient must be warned about the consequences of bilateral RLN palsies (permanent tracheostomy) and an Ear Nose and Throat surgeon should be present at extubation. In addition, the surgeon should avoid a retrojugular approach to the bifurcation, as this is associated with higher risks of temporary RLN injury (section 5.1.6). (iii) It is important to ensure the patient is receiving optimal medical therapy (section 3.1 and 4.2) and (iv) the surgeon must anticipate the possibility of distal ICA disease. If this is considered likely, the surgeon must ensure that CEA can be done safely. It may be necessary to plan a more complicated exposure (section 5.1.14).

5.1.2. Staged or synchronous bilateral carotid interventions? Some patients present with bilateral severe stenoses. Most will be asymptomatic, or one side will be symptomatic and the other asymptomatic. It is extremely rare for both stenoses to be simultaneously symptomatic. Some have suggested that synchronous bilateral CEAs should be considered, but the most dangerous complication is injury to both RLNs or hypoglossal nerves, which can be fatal. Accordingly, if bilateral revascularisation is deemed necessary, it is safer to consider bilateral CAS, unilateral CEA + contralateral CAS or staged bilateral CEAs.

5.1.3. Carotid endarterectomy under general versus locoregional anaesthesia? There is controversy on whether to perform CEA under locoregional anaesthesia (LRA) or general anaesthesia (GA). The General Anaesthesia Local Anaesthesia trial (n = 3 526) was the largest RCT and reported no difference in peri-operative death, stroke, or MI between GA (4.8%) and LRA (4.5%). However, pooled data from five CEA versus CAS RCTs showed reduced 30 day stroke/death for CEA under LRA (adjusted RR 0.70; 95% CI 0.50 – 0.99), while NIBLs were more common with GA (17.1% vs. 6.7%; p = .031). In the American College of Surgeons National Surgical Quality Improvement Project (LRA incurred lower CNI rates, shorter operation times and hospital stays, fewer readmissions, less post-operative pneumonia, and reduced blood transfusion. However, LRA attracted lower patient satisfaction (65% vs. 93%) and future preference (61% vs. 97%). In a large meta-analysis (25 observational studies, six RCTs [n = 152 376]), LRA was associated with statistically significantly shorter operation times, lower peri-operative stroke (OR 0.76; 95% CI 0.62 – 0.92, p = .006), fewer cardiac complications (OR 0.59; 95% CI 0.47 – 0.73, p < .001), and lower mortality (OR 0.72; 95% CI 0.59 – 0.90, p = .003) in observational studies. However, there were no statistically significant differences in any endpoint in RCTs. Some believe that RCTs lack statistical power, but an alternative interpretation may be that CEA under GA may be more challenging surgically (suggested by higher CNI rates, longer operation times, increased blood transfusion) and that observational study data reflect selection biases which are avoided in RCTs.

Most studies on CEA under LRA include patients on aspirin monotherapy. However, with the increasing use of
combination APRx (section 4.2.2.2), there are concerns about neck haematoma formation. In a systematic review of 69 observational studies \((n = 10 081)\), combined deep + superficial cervical plexus blockade was associated with statistically significantly higher complication rates (OR 2.13; \(p = .006\)) versus superficial or intermediate blockade.\(^{439}\) No guidance has been published regarding neck haematoma risks after deep cervical plexus blockade in LRA patients. In a working party consensus on LRA in patients with coagulation abnormalities, there was no mention of adverse events relating to combination APRx and no advice about performing CEA under deep cervical plexus blockade.\(^{440}\) There are no published data on whether it is safe to perform deep cervical plexus blockade in CEA patients on combination APRx.\(^{441}\) Given that an increasing proportion of symptomatic patients undergo CEA on combination APRx, surgeons and anaesthetists need to establish protocols regarding APRx strategies and choice of anaesthesia. It would be inappropriate to stop clopidogrel and delay CEA for 7 – 10 days to perform deferred CEA under LRA, as this increases the likelihood of recurrent embolic stroke. Intraoperative DUS may enable safer infiltration of LRA, with visualisation of the cervical transverse processes and VAs.

ESVS recommendations regarding LRA versus GA are the same as in the SVS and German-Austrian guidelines.\(^5\)\(^4\)

Recommendation 65 Unchanged

In patients undergoing carotid endarterectomy, decisions regarding choice of anaesthesia (locoregional, general) should be considered at the discretion of the surgeon/anaesthetist performing the procedure, taking account of local experience, patient preference, and preferred antiplatelet strategy.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIa</td>
<td>B</td>
<td>Hajibandeh et al. (2018)(^{588}), Knappich et al. (2019)(^{588}), Grief et al. (2021)(^{586}), Mallick et al. (2019)(^{586}), Trial Collaborative GALA (2008)(^{536})</td>
</tr>
</tbody>
</table>

5.1.4. Hospital and surgeon volumes.

Interpretation of data is confounded by interstudy heterogeneity regarding presentation (symptomatic vs. asymptomatic), urgency (emergency vs. elective), and non-standardised definitions of low versus high volume surgeons or hospitals (actual numbers vs. quintiles). A meta-analysis of 25 studies (900 000 USA based CEAs) reported notable benefit when CEA was performed in higher volume centres, with a threshold of 79 CEAs per centre per year.\(^{442}\) In a similar analysis of 18 248 UK CEAs, there was a volume–outcome relationship favouring higher volume centres,\(^{443}\) with an annual threshold of 35 CEAs per hospital. The differing thresholds probably relate to higher operative risks in symptomatic patients. Most UK CEAs involve SCS patients, while in the USA most are asymptomatic.

A systematic review of 233 411 CEAs in Europe reported an inverse relationship between hospital volume and peri-operative stroke/death in elective patients (no threshold reported), but no association with emergency CEAs. Univariable analyses suggested an inverse relationship between surgeon volume and outcome, but this did not persist after adjusting for confounding variables.\(^{489}\) AbuRahma analysed the influence of surgeon volume on 30 day stroke/death in 953 CEAs. High volume surgeons \((\geq 30 \text{ CEAs/year})\) had lower 30 day stroke/death (1.3%) than did surgeons performing < 30 CEAs/year (4.1%). Thirty day death/stroke was statistically significantly higher when CEA was performed by non-vascular surgeons versus vascular trained surgeons in ACS patients (3.2% vs. 0.72%; \(p = .033\)).\(^{489}\) In an Australia and New Zealand audit \((n = 16 765)\), there was a small but statistically significant inverse association between operator volume and in hospital stroke/death, which was 2.2% for the lowest three volume quintiles \((\leq 17 \text{ CEAs per year})\), versus 1.76% in surgeons with the two highest volume quintiles \((\geq 18 \text{ CEAs per year})\). There was, however, no hospital volume–outcome relationship.\(^{128}\)

In a meta-analysis of 25 studies on hospital volume, nine on surgeon volume, and seven on surgeon specialty, there was no association between hospital volume and outcome, but the definition of a high volume hospital ranged from > 20 to > 164 CEAs annually. Similarly, seven out of nine studies showed an inverse relationship for surgeon volume, but the definition of a high volume surgeon ranged from > 10 to > 50 CEAs per year,\(^{445}\) making it difficult to establish the optimal volume threshold. Finally, seven out of eight studies reported that specialist vascular training was associated with lower death/stroke after CEA versus non-vascular training, but only for low volume surgeons. For high volume surgeons, specialty had no impact.\(^{445}\) In a Canadian study \((n = 14 301)\), 30 day stroke was higher when CEA was performed by non-vascular surgeons (3.6%), than by vascular surgeons (2.5%) (OR 1.38; 95% CI 1.11 – 1.71).\(^{131}\)

The situation regarding hospital and/or surgeon volume thresholds is now being confounded by temporal changes in vascular workload. In 2012, the UK centralised major arterial procedures (including CEA) into larger volume centres, each serving a population of ≥ 800 000. At the time, it was advised that each vascular unit should perform ≥ 50 CEAs per year.\(^{158}\) However, the UK has seen a 25% decline in CEA numbers in symptomatic patients between 2011 and 2017, and a 65% decline in ACS patients, which was not associated with parallel increases in CAS numbers.\(^{135}\) The decline in CEA numbers in the UK, attributed to improvements in primary and secondary cardiovascular prevention, was the main reason for the Vascular Society of Great Britain and Ireland to recommend (in 2021) that the minimum annual hospital volume of CEAs should now be reduced from 50 to 35 (which will inevitably influence individual surgeon volumes as well).\(^{160}\)

While there is evidence that better outcomes are achieved when vascular surgeons perform CEA compared with non-vascular surgeons, data regarding hospital and surgeon volume outcomes are conflicting. Only the German-Austrian guidelines have made a recommendation about annual caseload, advising CEA should only be performed in hospitals performing > 20 CEAs per year.\(^3\)

5.1.5. Transverse or longitudinal incision? The standard approach is a longitudinal anterior sternomastoid incision, but CEA can be performed via a transverse skin crease incision which may confer better cosmesis and a lower CNI rate. Others, however, have reported no difference in CNI and it may be more difficult to insert a shunt with transverse incisions. A modified approach involves DUS marking of the bifurcation and a smaller longitudinal incision, which is extended as required. This reduces incision length and offers good cosmesis. Surgeons can, therefore, use whichever incision they prefer. If DUS suggests the bifurcation is not too high with a focal stenosis, a transverse crease incision will probably give the best cosmetic result. If there is any question about the bifurcation being high, or if the lesion is extensive, a longitudinal incision is preferable.

5.1.6. Antegrade or retrojugular exposure? A retrojugular approach avoids mobilising the hypoglossal nerve and may optimise access to the distal ICA, by sweeping (anteriorly) the sternoidealostad artery, hypoglossal nerve, and ansa cervicalis. A meta-analysis (four observational studies, two RCTs [740 CEAs]) found no evidence that retrojugular (vs. antegrade) exposure reduced peri-operative death (0.6% vs. 0.5%) or stroke (0.9% vs. 0.7%). However, a retrojugular approach was associated with higher rates of RLN palsy (8.1% vs. 2.2%) and no reduction in hypoglossal injury (1.3% vs. 1.3%).

5.1.7. Carotid sinus nerve blockade? The hypothesis that carotid sinus nerve blockade reduces hypotension, hypertension, or dysrhythmias during/after CEA was not supported by a meta-analysis of four RCTs. A fifth single centre RCT led to similar conclusions.

5.1.8. Protamine reversal of heparin? Evidence supports more routine use of protamine during CEA. A 2016 meta-analysis in 3 817 patients undergoing CEA who received protamine and 6 070 patients undergoing CEA who did not receive protamine, reported that protamine statistically significantly reduced re-exploration for neck haematomas (OR 0.42; 95% CI 0.22 – 0.8, p = .008), with no evidence that protamine increased peri-operative stroke (OR 0.71; 95% CI 0.49 – 1.03, p = .07). The proportion of US surgeons using protamine increased from 43% (2003) to 62% (2010) and 73% by 2018. VSGNE (10 059 CEAs) also reported that protamine statistically significantly reduced re-exploration for neck haematoma (0.6% vs. 1.4%; p = .001), without increasing peri-operative stroke/death (1.1% vs. 1.0%) or MI (1% vs. 1.2%). In a 2020 SVS-VQI audit (72 787 elective CEAs for ACS), re-operation for bleeding was higher in patients not receiving protamine (1.4% vs. 0.7%; OR 2.0, 95% CI 1.8 – 2.6). This is important as re-interventions for neck haematoma are associated with increases in peri-operative MI, stroke, and death. ESVS recommendations regarding protamine reversal of heparin are the same as the 2021 SVS and German-Austrian guidelines.

5.1.9. Shunting: routine, never, selective? Carotid clamping can cause haemodynamic stroke, which is prevented by shunt insertion. Surgeons tend to be routine, selective or never shunters, based on training. There is a paucity of quality data for guiding practice. While there are numerous methods for monitoring brain perfusion during clamping (electroencephalography [EEG], stump pressure, backflow, TCD, transcranial cerebral oximetry, near infrared spectroscopy), the only reliable method is the patient’s neurological status with CEA under LRA. A Cochrane review (six RCTs; 1 270 CEAs) concluded that (based on poor data) no meaningful recommendations could be made regarding shunt strategies. Analysis of 28 457 CEAs from a SSV-VQI audit (4 128 routine, 1 740 never, and 12 489 selective) found no differences in peri-operative TIA/stroke. A VQI update that included 5 683 CEA procedures performed within 14 days of symptom onset, showed no difference in peri-operative stroke rates following routine versus no shunting (OR 1.39; 95% CI 0.91 – 2.13). Shunting was a risk factor for increased 30 day stroke/death in patients undergoing CEA in the CSTC database. ESVS recommendations regarding shunting are the same as the SVS and German-Austrian guidelines.
An SVS-VQI registry reported lower peri-operative death, fatal stroke, death/stroke, and vein patches (OR 0.72; 95% CI 0.53–0.98) had lower one year re-stenosis rates versus primary closure.22

Routine patching (vs. routine primary closure) was associated with statistically significant reductions in 30 day ipsilateral stroke (1.5% vs. 4.5%; OR 0.2, 95% CI 0.1–0.6), early death (OR 0.46, 95% CI 0.3–0.7), and early re-stenosis (4.6% vs. 8.0%, OR 0.49, 95% CI 0.3–0.72) versus vein patch, PTFE patch, or primary closure. Bovine pericardial (OR 0.67; 95% CI 0.4–1.2), polyester (OR 0.49, 95% CI 0.3–0.8), and vein patches (OR 0.72; 95% CI 0.53–0.98) had lower one year re-stenosis rates versus primary closure.22

Routine patching (vs. routine primary closure) was associated with statistically significant reductions in 30 day ipsilateral stroke (1.6% vs. 4.8%; OR 0.3, 95% CI 0.2–0.6), late any stroke (2.4% vs. 4.6%; OR 0.49, 95% CI 0.3–0.9), and late re-stenosis (4.3% vs. 13.8%; OR 0.2, 95% CI 0.1–0.3, p < .01). No RCTs have compared routine with selective patching.456,457

Routine patching was associated with statistically significant reductions in 30 day ipsilateral stroke (1.6% vs. 4.8%; OR 0.3, 95% CI 0.2–0.6, p = .001), late any stroke (2.4% vs. 4.6%; OR 0.49, 95% CI 0.3–0.9, p = .002), and late re-stenosis (4.3% vs. 13.8%; OR 0.2, 95% CI 0.1–0.3, p < .01). No RCTs have compared routine with selective patching.456,457 No RCTs have evaluated selective patching strategies. ESVS recommendations regarding patching are similar to 2021 SVS guidelines,4 while the German-Austrian guidelines advise that the choice of CEA technique (eCEA vs. patched CEA) should be left to the operating surgeon.3

5.1.10. Patching: routine, never, selective?

A meta-analysis of 23 RCTs compared primary closure (n = 753), eversion CEA (n = 431), vein patch (n = 973), polytetrafluoroethylene (PTFE) patch (n = 948), polyester patch (n = 828), bovine pericardial patch (n = 249), and polyurethane patch (n = 258). Eversion CEA (eCEA) and patched CEA (PTFE, bovine pericardium) had the lowest 30 day stroke/death rates, with primary closure having the highest 30 day death/stroke rate. Lowest re-stenosis rates were observed with eCEA, then patched CEA (PTFE, bovine pericardium), with the highest rates in patients with primary closure or polyester patching. Vein patch blow out and patch infection were reported in 0.2%.77

A meta-analysis of 10 RCTs (n = 2157) observed that routine patching (vs. routine primary closure) was associated with statistically significant reductions in 30 day ipsilateral stroke (1.5% vs. 4.5%; OR 0.2, 95% CI 0.1–0.6, p = .001) and 30 day ICA thrombosis (0.5% vs. 3.1%; OR 5.6, 95% CI 2.4–12.5, p < .001). Patients randomised to primary closure were more likely to return to theatre within 30 days (3.1% vs. 1.1%; OR 2.9, 95% CI 1.3–6.3, p = .01). There were no notable differences regarding peri-operative death, fatal stroke, death/stroke, and CNI.456,457 An SVS-VQI registry reported lower peri-operative stroke/TIA when the arteriotomy was closed with bovine pericardium (OR 0.59; 95% CI 0.48–0.72) or polyester patches (OR 0.56; 95% CI 0.43–0.72) versus vein patch, PTFE patch, or primary closure. Bovine pericardial patches (OR 0.57; 95% CI 0.44–0.75), polyester patches (OR 0.70; 95% CI 0.50–0.98), and vein patches (OR 0.72; 95% CI 0.53–0.98) had lower one year re-stenosis rates versus primary closure.22

Routine patching was associated with statistically significant reductions in late ipsilateral stroke (1.6% vs. 4.8%; OR 0.3, 95% CI 0.2–0.6, p = .001), late any stroke (2.4% vs. 4.6%; OR 0.49, 95% CI 0.3–0.9, p = .002), and late re-stenosis (4.3% vs. 13.8%; OR 0.2, 95% CI 0.1–0.3, p < .01). No RCTs have compared routine with selective patching.456,457 No RCTs have evaluated selective patching strategies. ESVS recommendations regarding patching are similar to 2021 SVS guidelines,4 while the German-Austrian guidelines advise that the choice of CEA technique (eCEA vs. patched CEA) should be left to the operating surgeon.3

5.1.11. Eversion carotid endarterectomy versus conventional carotid endarterectomy?

During eCEA, the ICA is transected obliquely at its origin and a cylinder of atheroma expelled by eversion of the outer media and adventitia. The distal intimal step is examined for flaps, which are excised. The ICA can be shortened and then re-anastomosed to the bifurcation. Advantages include no prosthetic infection, it is quicker to perform, and the distal ICA is shortened where necessary. Disadvantages are that a shunt cannot be inserted until eCEA is completed and there may be problems accessing the distal ICA.

A meta-analysis (one RCT, six observational studies [n = 1 275]) reported that eCEA was associated with more post-CEA hypertension than conventional CEA (cCEA) (OR 2.75; 95% CI 1.82 – 4.16). Conversely, cCEA was associated with higher rates of hypertension (OR 11.37; 95% CI 1.95 – 66.46).456 In an SVS-VQI audit (n = 72 787), eCEA was an independent risk factor for re-interventions for bleeding (OR 1.4; 95% CI 1.1–1.7), possibly because of more extensive dissection.159 In a systematic review of five RCTs and 20 observational studies (16 249 eCEA and 33 251 cCEA), outcomes were different between RCTs and observational studies.456 In five RCTs, eCEA (vs. cCEA) was not associated with reduced 30 day stroke, death/stroke, or death/stroke MI, but eCEA was associated with fewer re-stenoses (OR 0.40; p = .001). In 20 observational studies, eCEA (vs. cCEA) was associated with statistically significant reductions in 30 day death (OR 0.46; p < .001), stroke (OR 0.58; p < .001), death/stroke (OR 0.52; p < .001), and late re-stenosis (OR 0.49; p = .032). However, when eCEA outcomes were compared with patched CEA in observational studies, there were no statistically significant differences in 30 day death, stroke or death/stroke, suggesting that cCEA provides equivalent outcomes to eCEA, provided the arteriotomy is patched. ESVS recommendations regarding ecea versus cCEA, are similar to SVS guidelines.4 The German-Austrian guidelines advise that the choice of eCEA or cCEA should be left to the operating surgeon.3

5.1.12. Patch closure material

For patients undergoing carotid endarterectomy, decisions regarding shunting (routine, selective, never) should be considered at the discretion of the operating surgeon.4

<table>
<thead>
<tr>
<th>Recommendation 71</th>
<th>Unchanged</th>
</tr>
</thead>
<tbody>
<tr>
<td>For patients undergoing conventional carotid endarterectomy, routine patch closure is recommended, rather than routine primary arteriotomy closure.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>A</td>
<td>Paraskevas et al. (2018)</td>
<td>456</td>
</tr>
</tbody>
</table>

For patients undergoing carotid endarterectomy, decisions regarding shunting (routine, selective, never) should be considered at the discretion of the operating surgeon.4

<table>
<thead>
<tr>
<th>Recommendation 74</th>
<th>Unchanged</th>
</tr>
</thead>
<tbody>
<tr>
<td>For patients undergoing carotid endarterectomy, the choice between eversion or patched endarterectomy should be considered at the discretion of the operating surgeon.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIa</td>
<td>A</td>
<td>Paraskevas et al. (2018)</td>
<td>456</td>
</tr>
</tbody>
</table>

5.1.12. Management of coils, kinks, and loops. In DUS studies involving 19 804 patients aged > 25 years, 13.5% had coils, kinks, or loops.459 Half had histology consistent with fibromuscular dysplasia.460 In whom an increased incidence of spontaneous dissection was observed.461 One RCT compared surgical correction with BMT in 182 patients with hemispheric or non-hemispheric symptoms and isolated ICA coils or kinks, with independent neurologist assessment.462 Patients randomised to surgery had 0% thrombosis at 5.9 years, versus 5.5% with BMT (p = .020). Late stroke was 0% after surgery, versus 6.6% with BMT (p = .010). ESVS recommendations regarding treatment of coils/kinks are similar to SVS guidelines.4

5.1.13. Monitoring and quality control after carotid endarterectomy. Quality control (QC) is not the same as monitoring. The role of monitoring is to ensure adequate brain perfusion, (especially during clamping or shunting), using TCD, CEA under LRA, stump pressure, ICA back perfusion, (especially during clamping or shunting), using TCD, identifying luminal thrombus or haematoma on DUS, or angiography (which confirms the adequacy of brain perfusion and identifies luminal thrombus or haematoma). The role of QC is to identify and correct technical error, such as embolisation during carotid mobilisation (TCD), ensuring the shunt is functioning (TCD, CEA under LRA), identifying luminal thrombus before flow restoration (angiography), identifying luminal thrombus after flow restoration (DUS, angiography), diagnosing intimal flaps (angiography, DUS, angiography), diagnosing residual stenoses (DUS, angiography), and diagnosing the rare patient thrombosing the operated ICA during neck closure (increasing embolisation followed by declining MCA velocities on TCD).409

A meta-analysis of 34 observational studies compared procedural risks in patients undergoing (vs. not undergoing) completion imaging after CEA (angiography = 53 218; DUS = 20 030; flowmetry = 16 812; angiography = 2 291). No study evaluated combination completion imaging and no RCTs have been performed. Completion angiography and DUS reduced peri-operative stroke (RR 0.83; 95% CI 0.76 – 0.91) and death (RR 0.86; 95% CI 0.76 – 0.98). Flowmetry conferred no benefit. Completion angiography was associated with reductions in peri-operative stroke (RR 0.48; 95% CI 0.033 – 0.68, p = .001).71 ESVS recommendations regarding monitoring and QC are similar to the German-Austrian guidelines.4 The SVS guidelines concluded there was insufficient evidence to recommend completion imaging.4

5.1.14. Management of high internal carotid artery lesions. High bifurcation or disease extending behind the jaw poses technical challenges and increases operative risks. If DUS cannot image above the lesion, CTA/MRA must be performed to evaluate operability. Distal disease should prompt the surgeon to reconsider whether CEA remains appropriate in ACS patients. If the patient is symptomatic and the surgeon is concerned about their ability to complete the procedure, referral to a more experienced surgeon is advised. CAS is an alternative, but longer lesions increase stroke rates after CAS.44,471 Simple measures to facilitate distal access include nasopharyngeal intubation (which opens up the angle between the mastoid process and the jaw), division of various ECA branches, and division of the posterior belly of the digastric muscle. More complex strategies, including temporomandibular subluxation, must be planned in advance as these cannot be done once CEA is under way. An alternative operative strategy (which can be used intra-operatively) involves extending the incision anterior to the ear with mobilisation of the superficial lobe of parotid.462 This increases access to the upper ICA, but usually requires input from Ear Nose and Throat or Maxillofacial colleagues. ESVS recommendations regarding distal disease extension are similar to SVS guidelines.4

5.1.15. Wound drainage. Drain placement after CEA should (in theory) prevent haematoma formation which can compromise the airway and increase peri-operative death/stroke,137 as well as predisposing to abscess formation and patch infection. There is controversy about whether drains make a difference, with one RCT showing no difference in drain volumes or haematoma size on DUS.463 In 47 752 CEA patients in a VQI database, 41% had drain placement. However, drains did not reduce re-interventions for neck haematoma (1% vs. 0.83%; OR 1.28, 95% CI 1.03 – 1.58) but were associated with
increased length of stay (2.4 vs. 2.1 days; OR 2.2, 95% CI 1.5—3.7). In a meta-analysis of five observational studies (drain = 19 832; no drain = 28 465), wound drainage was associated with statistically significantly higher rates of re-exploration, versus no drains (OR 1.24; 95% CI 1.03 — 1.49, p = .02), 85 while in a VQI audit (n = 28 683), wound drainage did not protect against re-operation for bleeding (OR 1.06; 95% CI 0.76 — 1.48, p = .72). ESVS recommendations regarding wound drainage are similar to SVS guidelines. 3

5.1.16. Ward, high dependency or intensive care post-operatively? Patients benefit from three to six hours of close neurological and intra-arterial BP monitoring in theatre recovery. Few need overnight monitoring in a high dependency unit (HDU) or intensive care unit (ICU). Most are then transferred to the vascular ward for hourly non-invasive BP and neurological monitoring for the first 24 hours (four to six hourly thereafter until discharge). Up to 40% may require treatment for post-CEA hypertension, 464 with half needing treatment in the first three post-operative hours (section 7.1.3.3). If there are no additional hypertensive surges, patients can return to the ward two to three hours later. Patients requiring ongoing i.v. hypertensive therapy should remain in theatre recovery or go to HDU/ITU for intra-arterial BP monitoring. Two hours after i.v. treatment has been completed (with no further BP surges), it is reasonable to transfer patients to the vascular ward for ongoing monitoring. Anyone suffering a major intra-operative cardiac event should be transferred to ICU or coronary care for further evaluation.

5.2. Carotid bypass

5.2.1. Indications. Carotid bypass may be indicated in the treatment of patch infection, carotid stent explantation, restenosis, or technical problems during CEA (arterial wall thinning, damage to arterial wall). Other indications include extensive atherosclerotic disease, ICA fibrosis secondary to radiotherapy, or revascularisation after en bloc removal of a neck tumour. 465—474

5.2.2. Technique. There are several techniques including interposition with proximal and distal end to end anastomoses, or end to side anastomosis to the distal common carotid artery (CCA) and either end to side or end to end anastomosis to the distal ICA. The ECA can be preserved or ligated. Conduits include reversed saphenous vein (from the thigh), 465, 466, 467, 470, 474 PTFE, 465, 466, 468, 469, 472, 474 or polyester. 473

5.2.3. Results. Outcomes from observational studies are detailed in Table 32. Late patency of prosthetic and vein grafts appeared comparable with CEA. Late prosthetic graft infection was rare (3/987; 0.3%).

5.3. Extracranial to intracranial bypass

The rationale for extracranial to intracranial (EC-IC) bypass in patients with extracranial ICA occlusion (usually from the superficial temporal artery to the ipsilateral MCA), is that it reduces long term ipsilateral ischemic stroke. A Cochrane review (two RCTs, 19 observational studies [n = 2 591]) concluded that EC-IC bypass conferred no benefit over BMT regarding late stroke prevention (RCTs: OR 0.99; 95% CI 0.79 — 1.23, p = .91; non-RCTs: OR 0.80; 95% CI 0.54 — 1.18, p = .25). A third RCT included patients with recently symptomatic ICA occlusion and haemodynamic impairment in the ipsilateral hemisphere. The two year risk of ipsilateral stroke (including 30 day death/stroke) was 21% (95% CI 12.8 — 29.2) after EC-IC bypass, versus 22.7% (95% CI 13.9 — 31.6) with BMT (p = .78). There is currently no role for EC-IC bypass in patients with atherosclerotic ICA occlusion.

Table 32. Thirty day and late outcomes following carotid bypass surgery

<table>
<thead>
<tr>
<th>Author</th>
<th>Patients</th>
<th>Conduit type (n)</th>
<th>30 d death/stroke</th>
<th>Primary patency</th>
<th>Late infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ricco 466</td>
<td>198</td>
<td>PTFE</td>
<td>1 / 198 (0.5)</td>
<td>98% at 10 y</td>
<td>0</td>
</tr>
<tr>
<td>Dorañasar 466</td>
<td>31</td>
<td>PTFE</td>
<td>1 / 31 (3.2)</td>
<td>90% at 4 y</td>
<td>1 / 31</td>
</tr>
<tr>
<td>Roddy 468</td>
<td>22</td>
<td>PTFE</td>
<td>0 / 22 (0)</td>
<td>95% at 2 y</td>
<td>0</td>
</tr>
<tr>
<td>Veldenzer 469</td>
<td>51</td>
<td>PTFE</td>
<td>1 / 51 (1.9)</td>
<td>96% at 2 y</td>
<td>0</td>
</tr>
<tr>
<td>Illuminati 472</td>
<td>66</td>
<td>PTFE</td>
<td>0 / 66 (0)</td>
<td>93% at 5 y</td>
<td>0</td>
</tr>
<tr>
<td>Ricco 473</td>
<td>42</td>
<td>PTFE (31), GSV (11)</td>
<td>0 / 42 (0)</td>
<td>N/A</td>
<td>0</td>
</tr>
<tr>
<td>Stilo 474</td>
<td>13</td>
<td>PTFE (7), GSV (6)</td>
<td>0 / 13 (0)</td>
<td>100% at 41 mo</td>
<td>N/A</td>
</tr>
<tr>
<td>Koncar 471</td>
<td>29</td>
<td>Polyester</td>
<td>19 / 292 (6.5)</td>
<td>96% at 32 mo</td>
<td>2 / 292</td>
</tr>
<tr>
<td>Dorañasar 466</td>
<td>10</td>
<td>GSV</td>
<td>1 / 10 (10)</td>
<td>80% at 4 y</td>
<td>N/A</td>
</tr>
<tr>
<td>Launder 467</td>
<td>50</td>
<td>GSV</td>
<td>3 / 50 (6.0)</td>
<td>83% at 3 y</td>
<td>N/A</td>
</tr>
<tr>
<td>Branchereau 476</td>
<td>212</td>
<td>GSV</td>
<td>14 / 212 (6.6)</td>
<td>92% at 10 y</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Data are presented as n or n (%) unless stated otherwise. PTFE = polytetrafluoroethylene; GSV = greater saphenous vein; N/A = not available.
6. CAROTID ARTERY STENTING

6.1. Adjuvant medical therapy

Most operators administer 5000 IU i.v. heparin to prevent thrombosis, plus 0.6—1.2 mg atropine (0.6 mg glycopyrrolate) before balloon inflation to prevent hypotension, bradycardia, or asystole.477,478

6.2. Access routes

6.2.1. Transfemoral. Access in RCTs comparing CEA versus CAS was mostly via the common femoral artery (CFA), with other routes reserved for CFA disease, tortuosity, or disease of both iliac arteries and distal aorta. Unfavourable arch anatomy (type III, bovine arch) and severe atheromatous disease of the aortic arch or supra-aortic arteries increase the risk of cerebral embolisation during catheter navigation via the CFA, which has encouraged the development of alternative access strategies.

6.2.2. Transcarotid. Direct access to the proximal CCA (via a cervical incision) avoids manipulation of wires and catheters in the arch. TCAR provides cerebral protection via proximal CCA clamping plus ICA flow reversal via an extracorporeal circuit from the CCA to femoral vein479 or ipsilateral jugular vein (allowing the stenosis to be stented during protected flow reversal) with statistically significantly fewer NIBLs (13\% vs. 33\%) after TFCAS ($p < .03$).480 No RCTs have evaluated TCAR, but registries have reported outcomes. ROADSTER-2 enrolled 692 patients deemed ‘high risk for CEA’ with 99.7\% technical success, despite 81\% of operators being TCAR naive.481 Procedural success (technical success without death/stroke/MI < 30 days) was 96.5\%, with 30 day stroke rates of 1.9\%, mortality 0.4\%, MI 0.9\%, and CNI 1.4\%. Thirty day stroke/death was 2.3\%. However, only a minority (26\%) were symptomatic.482 An SVS-VQI registry compared TCAR ($n = 638$) with TFCAS ($n = 10136$) and reported that TFCAS was associated with statistically significantly higher in hospital TIA/stroke/death versus TCAR (OR 2.1; 95\% CI 1.08—4.08, $p < .03$).483 However, only 33\% of the TCAR cohort were symptomatic, versus 42\% in the TFCAS cohort ($p < .001$). A second SVS-VQI registry compared TCAR with CEA and reported fewer CNIs after TCAR (0.6\% vs. 1.8\%; $p < .001$), but no difference in hospital stroke/death (OR 1.3; 95\% CI 0.8—2.2, $p = .28$).484 Only 32\% of the TCAR cohort were symptomatic. An SVS-VQI study developed a TCAR risk score calculator to aid patient selection, but recency of symptoms was excluded.477 A systematic review of TCAR (13 observational studies; $n = 8380$) reported low 30 day stroke rates (1.2—5.2\%), MI (0—2.1\%), and death (0—2.7\%),471 while another meta-analysis of 13 observational studies ($n = 837$) reported that carotid dissection following TCAR was 2\% (95\% CI 1—3).485 Outcome data when TCAR was performed < 14 days of symptom onset are detailed in section 4.5.5.

6.2.3. Radial or brachial. RADCAR (RADial access for CARotid artery stenting) randomised 260 patients to radial access (TRA) or TFCAS. Procedural success was 100\%, with 10\% crossover during TRA and 1.5\% with TFCAS ($p < .05$).453 Access complications were low (0.9\% vs. 0.8\%), as were major cardiac and/or cerebral events (0.9\% vs. 0.8\%), but radiation doses to the patient were higher with TRA.454 In a single centre series (101 TRA; 674 TFCAS), in hospital cardiac and/or cerebral events were similar (2\% vs. 3.6\%), with a crossover of 4.9\% from TRA to TFCAS.486 Navigating from the right radial artery (RA) into the CCA (especially the left) is challenging. In a multicentre series ($n = 214$) undergoing TRA CAS, distal filter deployment was not possible in 7\%, while proximal protection was not possible in 1.6\%.487 A meta-analysis of seven observational studies involving 723 ACS and SCS patients undergoing TRA CAS, reported minor stroke/TIA in 1.9\% (95\% CI 0.6—3.8), major stroke rate 1.0\% (95\% CI 0.4—1.8) and RA occlusion rates of 5.9\% (95\% CI 4.1—8.0).488

<table>
<thead>
<tr>
<th>Recommendation 81</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>For patients undergoing carotid artery stenting, intravenous atropine or glycopyrrolate is recommended prior to balloon inflation to prevent hypotension, bradycardia, or asystole.</td>
<td>Changed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>C</td>
<td>Gupta et al. (2005)477, Trociola et al. (2006)478</td>
<td></td>
</tr>
</tbody>
</table>

6.3. Wires, catheters, and stent design

Access to the CFA, brachial, or RA is secured and a .035” hydrophilic guide wire used to access the CFA. Long sheaths (6—8 Fr) or guiding catheters secure a stable position in the CCA, typically after exchange of a .035” support wire in the CFA. For stent placement and balloon angioplasty (requiring rapid exchange systems). .014” floppy tip guide wires are advised.

6.3.1. Carotid stent design. Carotid stent design is summarised in Table 33 as open cell (more flexible, suited for tortuous anatomy), closed cell (more rigid, better plaque coverage), or hybrid (closed cell in middle, open cell at the edges). There are conflicting data regarding open versus closed cell stents. Two small RCTs reported no outcome differences,484,485 although NIBLs were more common with open cell stents ($p = .020$).486 A CTC meta-analysis ($n = 1557$) reported that open cell stents incurred statistically significantly higher 30 day stroke/death (10.3\% vs. 6\%) than closed cell (RR 1.7; 95\% CI 8.0).
However, after the peri-operative period, late stroke risks are similar (HR 0.78; 95% CI 0.35 – 1.75). In the German CAS registry (n = 13 086) there was a non-statistically significant trend towards lower in hospital stroke/death with closed cell stents (RR 0.86; 95% CI 0.65 – 1.14, p = .30), while in an SVS-VQI registry (1 384 closed cell vs. 1 287 open cell), multi-variable analyses revealed that closed cell stents were associated with higher stroke/death when deployed across the bifurcation (OR 5.5; 95% CI 1.3 – 22.2, p = .020). In a meta-regression analysis (n = 46 728), open cell stents were associated with statistically significantly higher 30 day death/stroke and NIBLs (RR 1.25; p = .030), with no differences regarding restenosis, stent fracture, or intraprocedural haemodynamic depression.

Dual layer mesh covered stents (DLS) combine the close vessel wall apposition of open cell stents (soft nitinol outer layer) and prevention of plaque prolapse associated with closed cell stents (micromesh inner layer with very small cell size). A small RCT (n = 104 with lipid rich plaques) reported that proximal protection reduced MES by 76–83% versus distal filter protection (p < .001), while DLS reduced MES by 13–29% versus closed cell stents (p = .02). A meta-analysis of four observational studies revealed one year death/stroke rates of 3.8% with DLS and 2.1% re-stenosis. A Japanese study enrolled 140 DLS patients (39% SCS), reporting that the risk of peri-operative death/stroke/MI and/or ipsilateral stroke at one year was 1.4%. Outcomes were similar irrespective of age, CEA risk, and presentation. Caution should be exercised if considering DLS in acute stroke treatment, as a registry has reported higher rates of acute stent thrombosis with DLS (45% vs. 3.7%) than with single layer stents (p = .001).

6.4. Pre-dilation and post-dilation

Pre-dilation of the target lesion facilitates advancement of distal protection systems and stent catheters, as well as allowing stent expansion, which is also the aim of post-dilation. Pre-dilation is generally avoided unless the stent or protection device cannot cross a tight lesion. Severe calcification (circumferential or exophytic) is a contraindication to CAS because of high procedure failure rates. Pre- and post-dilation may also cause embolisation and vessel injury. In a CSTC meta-analysis (n = 1 557), 30 day death/stroke was unaffected by pre-dilation (RR 0.96; 95% CI 0.67 – 1.44, p = .92) or post-dilation (RR 0.87; 95% CI 0.47 – 1.62, p = .67). However, another meta-analysis (six observational studies [n = 4 652]) reported greater haemodynamic instability when post-dilation was performed (OR 1.69; 95% CI 1.14 – 2.56). Single versus double dilation was associated with statistically significantly fewer neurological events (RR 0.67; 95% CI 0.47 – 0.97, p = .030), as was less aggressive pre-dilation (balloon diameter < 5 mm) compared with > 5 mm balloons (RR 0.27; 95% CI 0.09 – 0.86, p = .026). In a series of 255 ACS and SCS patients, primary stenting (without pre- or post-dilation), was associated with a 1.2% 30 day risk of death/stroke.

6.5. Cerebral protection devices

The role of cerebral protection devices (CPDs) is controversial, despite embolic material being regularly retrieved from filters. In a meta-analysis of 13 RCTs and 193 registries (n = 54 713), 22 studies (n = 11 655) reported lower

Table 33. Characteristics of open cell, closed cell, and hybrid design stents

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Open-cell</th>
<th>Closed-cell</th>
<th>Hybrid design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free cell area</td>
<td>Large</td>
<td>Small</td>
<td>Mid segment: small; edges: large</td>
</tr>
<tr>
<td>Strut interconnections</td>
<td>Few</td>
<td>Many</td>
<td>Mid segment: many; edges: few</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Good</td>
<td>Limited</td>
<td>Moderate</td>
</tr>
<tr>
<td>Plaque coverage</td>
<td>Limited</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>

peri-operative stroke/death favouring CPDs (OR 0.57; 95% CI 0.43 – 0.76, p < .01). However, a CSTC meta-analysis of three RCTs (n = 1 557) reported that CPDs did not reduce 30 day stroke/death (RR 1.1; 95% CI 0.71 – 1.70, p = .67). The German National registry (n = 13 086) observed that CPDs were associated with lower rates of major stroke/death (RR 0.60; 95% CI 0.43 – 0.84) and any stroke (RR 0.57; 95% CI 0.43 – 0.77). An SVS-VQI audit (n = 10 074) also reported higher 30 day stroke/death when CPDs were not used (OR 3.97; 95% CI 2.47 – 6.37).

Proximal CPDs protect the brain by reversing blood flow in the bifurcation during stenting (section 6.2.2). Proximal CPDs should, however, be avoided in patients with severe ECA or CCA disease. The best CAS results in RCTs involving asymptomatic patients were reported by CREST-1 and ACT-1, where CPDs were mandatory and practitioners were trained in their use. Contradictory reports have led to conflicting opinions among CAS practitioners, with some claiming CPDs are unnecessary, while others would never perform unprotected CAS. Given the lack of RCTs, ESVS recommendations are based on a consensus among CAS practitioners that CPDs should be considered when performing CAS. ESVS recommendations regarding access for CAS, protection devices, and pre- and post-dilation are similar to the 2021 SVS guidelines.

6.6. Hospital and individual operator volumes

Low volume hospitals (< 20 CAS/year) had a statistically significantly higher 30 day stroke rate than higher volume hospitals (HR 1.5; 95% CI 1.06 – 2.12, p = .023). In a Healthcare Cost and Utilisation Project, higher CAS volumes were associated with lower mortality/morbidity, shorter length of stay, and reduced hospital costs. In a ‘high risk for CEA’ registry, a lifetime experience of 72 procedures was required to achieve 30 day death/stroke rates < 3% in non–octogenarian ACS patients. Thirty day mortality in Centre for Medicare and Medicaid beneficiaries was higher if practitioners performed fewer than six CAS a year versus > 24 (OR 1.9; 95% CI 1.4 – 2.7, p < .001). In a single centre series (n = 2 124), a lifetime experience of > 100 interventions was associated with fewer peri-operative strokes (OR 0.81; 95% CI 0.67 – 0.95), while < 50 procedures was a predictor for increased peri-operative stroke (p < .001).

A CSTC meta-analysis of three European RCTs (n = 1 557 SCS patients) reported that 30 day death/stroke was not influenced by lifetime CAS experience, but 30 day death/stroke was higher with lower volume operators (< 3.2 CAS/year) versus higher volume operators (> 5.6 CAS/year) (OR 2.3; 95% CI 1.36 – 3.87). CSTC concluded that a minimum of six CAS procedures per year was necessary to remain competent. However, others advise that in an era of low CAS volumes, 25 lifetime procedures is reasonable to achieve competency, plus 10 – 15 procedures annually. A 2021 audit from Australia and New Zealand (n = 1 350) demonstrated higher peri-operative stroke/death rates with lower volume CAS operators (2.63% for operators doing < 11 annual cases) versus 0.37% for operators performing ≥ 12 cases annually (OR 6.11; 95% CI 1.27 – 29.33, p = .024). In the CHOICE registry (n = 5 841), operator volume (but not hospital volume) was an independent predictor of 30 day death/stroke/MI, with a 5% increase in adverse outcomes per additional month between consecutive CAS procedures (OR 1.05; 95% CI 1.02 – 1.09, p = .005). SVS guidelines made no recommendation regarding annual CAS volumes, but the German-Austrian guidelines advised that CAS should only be performed in hospitals performing > 10 CAS procedures per year.

Recommendation 87

For patients undergoing carotid artery stenting, cerebral protection systems should be considered.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIA</td>
<td>C</td>
<td>Rosenfield et al. (2016)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brott et al. (2010)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Touze et al. (2009)</td>
</tr>
</tbody>
</table>

Recommendation 88

For patients undergoing carotid artery stenting, decisions regarding choice of cerebral protection (filter, proximal flow reversal) should be considered at the discretion of the operator.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIA</td>
<td>B</td>
<td>Wodarg et al. (2018)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hicks et al. (2018)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knappich et al. (2017)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rosenfield et al. (2016)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brott et al. (2010)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Touze et al. (2009)</td>
</tr>
</tbody>
</table>

Recommendation 89

For patients undergoing carotid artery stenting, it is not recommended to deploy proximal cerebral protection devices in patients with advanced common carotid disease or external carotid artery disease (if an occlusion balloon is to be positioned in the external carotid artery) or in patients with contralateral occlusion and insufficient collateralisation.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>C</td>
<td>Cremonesi et al. (2015)</td>
</tr>
</tbody>
</table>

Recommendation 90

For patients undergoing transfemoral carotid stenting, at least twelve carotid stent procedures per year (per operator) may be considered an appropriate operator volume threshold in order to maintain optimal outcomes.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIA</td>
<td>C</td>
<td>Giurgiues et al. (2021)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Badheka et al. (2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shishehbor et al. (2014)</td>
</tr>
</tbody>
</table>
7. COMPLICATIONS AFTER CAROTID INTERVENTIONS

7.1. Peri-operative

7.1.1. Stroke after carotid endarterectomy

7.1.1.1. Intra-operative. Intra-operative stroke is a new neurological deficit (worsening of pre-existing deficit), apparent following recovery from anaesthesia (or during CEA under LRA), lasting > 24 hours. Most follow intra-operative embolisation (carotid mobilisation, shunt insertion, flow restoration, accumulation of thrombus on endarterectomy zone). A minority (20%) are haemodynamic after carotid clamping or shunt malfunction. In a 21 year audit (n = 2 300), most intra-operative strokes followed embolisation of luminal thrombus at flow restoration, with the source being bleeding from transected vasa vasorum onto the endarterectomised surface. One advantage of CEA under LRA is that the timing of new deficits can be accurately determined. For patients undergoing CEA under GA, abrupt EEG changes predict the likeliest time of onset. Patients with a triad of hemiplegia, homonymous hemianopia, and higher cortical dysfunction on recovery from anaesthesia are likely to have suffered ICA or MCA occlusion. If one to two triad components are present, occlusion of one or more MCA branches is likely.

Previously, patients recovering from anaesthesia with a new neurological deficit underwent immediate re-exploration to exclude thrombus within the endarterectomy zone. This remains the recommendation in the 2021 SVS guidelines. However, a recent Delphi consensus study concluded that immediate re-exploration remained appropriate in patients experiencing a new deficit when flow was restored with CEA under LRA, but in all other peri-operative phases, rapid imaging of carotid vessels and brain was advised before re-exploration. In ACST-1, there was no difference in rates of disabling/fatal stroke between patients who underwent immediate re-exploration versus those who did not. The priority, therefore, is to quickly identify patients with ICA thrombosis, as they will benefit from immediate re-exploration. TCD aids decision making, as MCA velocities with ICA thrombosis are identical to those during carotid clamping. Thrombosis is also preceded by increasing rates of occlusion of the ipsilateral anterior or middle cerebral artery can be treated by re-exploration (to remove thrombus in the endarterectomy zone) followed by intra-arterial thrombolysis. Emergency MT is another option in patients with embolic MCA mainstem occlusion. No RCTs have been done, but targeted intra-operative neuromonitoring (TCD, EEG) and QC assessment (completion angioscopy, DUS, angiography) have been associated with significant reductions in intra-operative stroke.

7.1.1.2. Post-operative. This is defined as a new neurological deficit (or worsening of a pre-existing deficit) after an uneventful recovery from anaesthesia, with symptoms lasting > 24 hours. In the first six hours, the most common cause is ICA thrombosis or embolism from mural thrombus in the endarterectomy zone. A Delphi consensus recommended rapid imaging before re-exploration. After six hours, CT and extracranial and intracranial CT/CTA will exclude ICA thrombus, cerebral oedema, or parenchymal haemorrhage. In ICS, the commonest cause of post-operative stroke was hyperperfusion syndrome (HS). HS is discussed in more detail in section 7.1.3.5.

7.1.1.3. Predictors of stroke after carotid endarterectomy. In ECST, predictors included (i) female sex (10.4% vs. 5.8%, p = .001); (ii) PAD (12.0% vs. 6.1%, p = .001); (iii) pre-operative SBP (< 120 mmHg = 3.4%; 121 – 159 = 6.5%; 160 – 180 = 7.7%; > 180 mmHg = 13.0%, p = .040); and (iv) presentation (retinal [3.2%], hemispheric stroke [6.3%, TIA [9.1%], p = .006]). Predictive features in NASCET were (i) hemispheric versus retinal events (6.3% vs. 2.7%; OR 2.3; 95% CI 1.1 – 5.0); (ii) left versus right CEA (6.7% vs. 3.0%; OR 2.3, 95% CI 1.4 – 3.6); (iii) contralateral occlusion (9.4% vs. 4.4%; OR 2.2, 95% CI 1.1 – 4.5); (iv) ipsilateral CT/MR infarct (6.3% vs. 3.5%; OR 1.8; 95% CI 1.2 – 2.8); and (v) irregular versus smooth plaques (5.5% vs. 3.7%; OR 1.5, 95% CI 1.1 – 2.3). In ICS, stroke was more frequent in females (RR 1.98; 95% CI 1.02 – 3.87, p = .05) and with increased DBP (RR 1.30 per 10 mmHg; 95% CI 1.02 – 1.66, p = .04), but unrelated to CEA method or GA versus LRA. In a multivariable model, increased DBP was the only independent predictor of stroke, MI, or death. In ACST-1, DBP was also an independent predictor for stroke.

7.1.2. Stroke after carotid artery stenting. In a meta-analysis of SCS patients in RCTs, the risk of stroke on the day of CAS was 4.7% with an additional 2.5% during days 1 – 30. Most were ischaemic (94%), with 91% ipsilateral to the stented ICA. Important causes include embolisation, in stent thrombosis, ICA/CCA dissection, HS, and ICH.
Prevention of embolic stroke is a role for CPDs (section 6.5), but embolism can still occur as a result of incomplete deployment, malpositioning, or incomplete aspiration of debris. If a neurological deficit occurs during CAS, no additional imaging is required prior to MT or intra-arterial TT. In patients developing a stroke after CAS, the usual rules of acute stroke management should be followed, which includes ICH exclusion (and other stroke mimics) and assessment of cerebral perfusion.

Treatment options in patients developing a new neurological deficit during CAS include MT with or without intra-arterial TT. Mechanical removal of embolic material from the distal ICA out to the distal M2 MCA segment is possible using dedicated neuro-interventional retrieval devices. Accordingly, most interventionists now advocate MT in CAS patients suffering acute stroke as a result of ICA or M1/M2 MCA branch occlusions. Intra-arterial TT is less effective in acute stroke during CAS as the embolus usually comprises plaque, rather than fibrin clot. In patients with acute stent thrombosis, TT should be considered with tPA delivered as a 5 mg bolus, followed by slow infusion (maximum dose 20 mg), ensuring the catheter remains positioned within the thrombus. If the thrombus dissolves, the microcatheter tip is advanced into the remaining thrombus. Selective intra-arterial administration of 5 mg abciximab followed by an i.v. bolus of 5 mg abciximab has been effective in treating distal embolisation during CAS. While no RCTs have addressed the treatment of acute stroke caused by ICA thrombosis, or M1/M2 embolic branch MCA occlusions, management should be no different to stroke occurring without a prior carotid intervention. It would be preferable that, in the future, a neuro-interventional service is available in any institution performing CAS.

Recommendation 93

For patients who develop an ipsilateral or contralateral stroke at any time period following carotid endarterectomy or carotid artery stenting, urgent diagnostic neurovascular imaging of both carotid arteries and the brain is recommended.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>Consensus</td>
</tr>
</tbody>
</table>

7.1.3. Haemodynamic instability

7.1.3.1. Post-endarterectomy hypotension

Post-CEA hypotension is attributed to exposure of carotid sinus baroreceptors to the pulse pressure, without the dampening effect of the excised plaque. Its relevance is variable, with some reporting increases in peri-operative stroke/MI, while others consider it a benign phenomenon. There is no consensus regarding what BP threshold should be used for treatment. Management of post-CEA hypotension is the same as for CAS.

7.1.3.2. Post-stenting hypotension

In a meta-analysis of 27 observational studies \((n = 4204) \), 12% of CAS patients were treated for hypotension, 12% for bradycardia, while 13% had treatment for both. Persistent haemodynamic instability (more than one hour vasopressor support) affected 19% of CAS patients. There was a noteworthy association between persistent haemodynamic depression after CAS and a history of ipsilateral CEA, calcification, involvement of the carotid bulb, severe stenosis, eccentric plaque, and nitinol stents, although the latter was not corroborated in a meta-analysis of two RCTs and 66 cohort studies \((n = 46728) \). Avoiding post-dilation was protective against persistent haemodynamic depression in a meta-analysis of six cohort studies involving 4652 patients (RR...
Meta-analysis of 27 observational studies (n = 4 204) suggested no differences in peri-operative stroke in CAS patients with or without haemodynamic instability (OR 1.0; 95% CI 0.57 – 1.75). Preventing haemodynamic instability during CAS involves hydration, withholding antihypertensive medications on the morning of CAS, continuous ECG/BP monitoring, and venous access. Glycopyrrolate (synthetic atropine derivative) was compared with atropine in a retrospective study (n = 115) and was more effective in preventing post-operative bradycardia (30% vs. 72%, p = .002), and hypotension (2.5% vs. 36%, p = .001), with lower rates of compensatory hypertension (2.5% vs. 16%, p = .047). Treatment of hypotension includes i.v. crystalloid and volume expanders, but this may be inadequate because of decreased peripheral vascular resistance with loss of sympathetic tone, rather than hypovolaemia. Titrated i.v. vaso-pressors (norepinephrine, dobutamine, phenylephrine) may be necessary to maintain SBP > 90 mmHg. Major adverse events (MI, dysrhythmia, cardioversion) were more common in patients receiving dopamine versus norepinephrine/phenylephrine (p = .040). Midodrine (selective α-1 agonist) causes arteriolar and venous vasoconstriction without stimulating cardiac β adrenergic receptors and is as effective as dopamine for treating hypotension after CAS.

7.1.3.3. Post-endarterectomy hypertension

Post-CEA hypertension can affect up to two thirds of patients, depending on its definition. Causes include carotid bulb denervation and increased norepinephrine and/or renin production. Post-CEA hypertension is associated with pre-operative hypertension, GA, and eCEA. The association between GA and post-CEA hypertension is attributed to increased neuroendocrine stress hormone levels, while the association with eCEA is attributed to carotid bulb denervation. In a meta-analysis of six observational studies, patients undergoing eCEA were more likely to require vasodilator therapy in the early post-operative period than those undergoing cCEA (OR 2.75; 95% CI 1.82 – 4.16). However, evidence suggests that (in the long term) there is no statistically significant difference in BP measurement between eCEA and cCEA. In a prospective study (n = 100), poorly controlled pre-operative BP and impaired baroreceptor function (but not impaired autoregulation) were associated with post-CEA hypertension. Intra-operative predictors include poorly controlled or labile hypertension at induction of anaesthesia. No other variable (including magnitude of MCA velocity increase with flow restoration) was predictive of post-CEA hypertension. Poorly treated post-CEA hypertension is associated with increased rates of post-operative TIA/stroke and is a risk factor for neck haematoma, HS, and ICH. There are various published strategies for when and how to treat post-CEA hypertension but because units tend to adopt different thresholds for intervening, it is difficult to define a consensus treatment protocol. However, it is important that units performing CEA/CAS have written guidance for the treatment of post-CEA hypertension, so that management decisions are not delayed.

7.1.3.4. Post-stenting hypertension

Post-CAS hypertension required treatment in 9.9% of CAS patients in an SVS-VQI database and was associated with higher rates of stroke/death (OR 3.39; 95% CI 2.3 – 5.0, p < .001). The management of post-CAS hypertension is the same as for CEA.

7.1.3.5. Hyperperfusion syndrome

There are no consensus criteria for diagnosing HS, which affects 1% of CEA and 3% of CAS patients. HS may be characterised by headache, confusion, atypical migrainous phenomena, seizures, hypertension, decreased consciousness, nausea and vomiting, and (ultimately) a neurological deficit, which can be due to vasogenic oedema, ischaemia, or haemorrhage. The average time of symptom onset is 12 hours post-operatively, although it can occur up to four weeks later. MRI typically shows vasogenic oedema (not always located in the ipsilateral carotid territory) with evidence of perfusion within the oedema (i.e., this is not an evolving ischaemic infarct). Other MRI features include hyperintense signal change on T2 weighted and fluid attenuated inversion recovery (FLAIR) MRI, without restricted diffusion on DWI. There may also be a high T1 signal with haemacuta haemorrhage.

Pathophysiological mechanisms include impaired baroreceptor function and disturbances to the trigeminovascular reflex. Female sex, older age, chronic kidney disease, and a treated left carotid artery were associated with HS after CAS. Impaired CVR increased the risk of HS after CAS, while hypertension and a significant contralateral stenosis (both risk factors for HS after CEA) and male sex did not. Risk factors for HS after CEA include female sex, recent major stroke, CAD, and a contralateral stenosis ≥ 70%. Several imaging modalities have been proposed as predictors for HS including TCD, SPECT, near infrared spectroscopy, perfusion CT, and quantitative MRA. However, TCD is probably the most reliable, with studies suggesting that 99% of patients with increases in mean MCA velocity < 100% at 24 hours (compared with baseline) did not develop HS. HS associated ICH appears more common after CAS than CEA, possibly because CAS is associated with intra-procedural hypotension followed by compensatory hypertension, which may persist beyond discharge and also because CAS patients are routinely prescribed DAPT. A meta-analysis of 41 observational studies (n = 28 956) hypertension and ipsilateral high grade stenosis were risk factors for ICH after both CEA and CAS. Untreated HS progresses through regional vasogenic oedema to petechial haemorrhages then ICH. Any patient with suspected HS should have elevated BP reduced urgently (section 7.1.3.3), while seizures should be controlled with appropriate antiepileptic drugs. ESVS recommendations regarding the management of post-intervention hypotension, hypertension, and HS are similar to the 2021 SVS and German-Austrian guidelines.
7.1.4. Wound haematoma after carotid endarterectomy.

Most neck haematomas occur in the last six hours post-operatively, usually following untreated hypertension.\(^\text{167}\) In a meta-analysis of six RCTs (\(n = 2988\)), 2.2% (95% CI 1.2 – 3.9) developed a haematoma requiring re-exploration.\(^\text{48}\) In GALA, the incidence of haematoma needing re-operation was 2.6% under GA versus 2.3% under LRA (\(p = ns\)).\(^\text{136}\) In an SVS-VQI registry (\(n = 72787\)), eCEA was an independent risk factor for re-exploration for neck haematoma (OR 1.4; 95% CI 1.1 – 1.7, \(p = .002\)).\(^\text{154}\) In another SVS-VQI audit (\(n = 28683\)), re-exploration for neck haematoma was associated with statistically significantly higher in hospital risks versus patients not re-explored (stroke: 3.7% vs. 0.8%, \(p < .001\); MI: 6.2% vs. 0.8%, \(p < .001\); death: 2.5% vs. 0.2%, \(p < .001\); stroke/death: 5.0% vs. 0.9%, \(p < .001\)).\(^\text{137}\) The effect of combination APRx on neck haematoma after CEA is discussed in section 4.2.2.4, while the role of protamine in reducing re-exploration for neck haematoma is discussed in section 5.1.8. Recommendations regarding wound drains are in section 5.1.15. ESVS recommendations regarding the management of neck haematoma are similar to the 2021 SVS and German-Austrian guidelines.\(^\text{4}\)

7.1.5. Cranial nerve injury. Cranial nerve injury (CNI) refers to partial or total loss of function of one or more of the 12 cranial nerves. In a meta-analysis of 7535 patients in 13 RCTs, CNI after CAS was 0.5% (95% CI 0.3 – 0.9) vs. 5.4% (95% CI 4.7 – 6.2) after CEA (OR 0.07; 95% CI 0.04 – 0.1).\(^\text{148}\) In ICSS, CNI occurred in 5.5% of patients, but only 1.3% had symptoms at 30 days and only one patient (0.12%) had a disabling CNI six months after CEA.\(^\text{334}\) In CREST, CNI was observed in 4.6% after CEA. Overall, one third resolved in < 30 days, with 81% resolving in less than one year. CNI impacted on swallowing at two to four weeks, but not thereafter.\(^\text{535}\) In a meta-analysis of four RCTs and 22 observational studies (\(n = 16749\)), CNIIs affected the RLN (4.2%), hypoglossal (3.8%), mandibular branch of facial nerve (1.6%), glossopharyngeal (0.2%), and the spinal accessory (0.2%), with CNI prevalence declining over the last 30 years.\(^\text{536}\) CNI predictors include urgent procedures, re-exploration for bleeding or neurological deficit,\(^\text{536}\) with GA (OR 1.68; 95% CI 1.19 – 2.39)\(^\text{130}\) and redo CEA (OR 13.61; 95% CI 5.43 – 34.16).\(^\text{102}\)

7.1.6. New post-operative ischaemic brain lesions. In ICSS, a subgroup (\(n = 161\)) underwent DWI-MRI post-operatively, with a second MRI scan one to three days post-operatively and a third at 27 – 33 days to evaluate the incidence of NIBLs.\(^\text{537}\) Sixty two of 124 CAS patients (50%) and 18/107 CEA patients (17%) had at least one NIBL at the first post-operative scan (OR 5.21; 95% CI 2.78 – 9.79, \(p < .001\)). At one month, there were persisting FLAIR-MRI changes in 28/86 CAS patients (33%) \textit{versus} 6/75 (8%) after CEA (OR 5.93; 95% CI 2.25 – 15.62, \(p < .001\)).\(^\text{537}\) In a meta-analysis (two RCTs, 18 observational studies), NIBLs were more common after CAS \textit{versus} CEA (40% \textit{vs.} 12%; OR 5.17, 95% CI 3.31 – 8.06, \(p < .001\)).\(^\text{538}\) In a meta-analysis of two RCTs and 44 observational studies (\(n = 5018\)), predictors for NIBLs after CEA included prior TIA/stroke, impaired CVR, and raised inflammatory markers. Predictors for NIBLs after CAS included increasing age, plaque vulnerability, and complex carotid and aortic arch anatomy.\(^\text{12}\) In a third meta-analysis (five RCTs, three observational studies \(n = 357\)), proximal protection \textit{versus} filter CPDs was associated with fewer NIBLS.\(^\text{98}\)
The clinical relevance of NIBLS is unclear. In carotid RCTs, there was no evidence of any association with cognitive impairment, possibly because cohorts were too small. The NeuroVISION study, which reported the incidence and significance of NIBLS after non-cardiac surgery in 1,114 patients (but not including CEA patients), observed that 7% developed NIBLS, of whom 42% developed cognitive impairment at one year versus 29% in patients with no NIBLS (HR 1.98; 95% CI 1.22 — 3.2). In ICSS, five year recurrent stroke/TIA was 22.8% in patients with NIBLS versus 8.8% in patients without NIBLS (HR 2.85; 95% CI 1.05 — 7.72, p = 0.04). NeuroVISION also reported increased rates of stroke/TIA at one year in patients with NIBLS (HR 4.13; 95% CI 1.14 — 14.99). ICSS concluded that NIBLS may be a marker of recurrent cerebrovascular events and that patients may benefit from more aggressive and prolonged combination APRs, although this has not been tested in RCTs. In future, NIBLS might become a surrogate endpoint in carotid intervention trials as they have a plausible biological relationship with stroke. A meta-analysis of nine RCTs and 76 observational studies (n = 6,970) concluded that for an underlying 3% ARR in procedural stroke among revascularisation techniques, a 90% sample size reduction could be achieved if NIBLS were used, instead of 30 day death/stroke. No guidelines have made any recommendations about the prevention or management of NIBLS.

7.2. Late complications

7.2.1. Prosthetic patch and stent infection. Patch infection complicates 1% of CEAs. About half present within three months of CEA (abscess/neck mass), with 55% presenting after more than six months (usually with a draining sinus). Patch rupture or anastomotic dehiscence with pseudoaneurysm formation is relatively rare (11%), and mostly occurs in the first three months. Staphylococci and Streptococci are the infecting organism in 90% of cases, with S. aureus predominating in early infections and S. epidermidis in later infections. Antibiotic therapy should be determined by an MDT approach, based on likely microorganisms in the absence of cultures. DUS (first line) may reveal patch corrugation (can precede overt infection by 11 months), deep collections, or pseudo-aneurysm formation. DUS should be followed by CTA/MRI in patients being considered for re-exploration.

Conservative therapy is not advised in fit patients, because of the high risk of secondary haemorrhage or tracheal compression following anastomotic dehiscence or wall necrosis. It is helpful to review the original operation note to establish whether the patient developed ipsilateral neurological symptoms, coma, or seizures during carotid clamping (if CEA was performed under LRA) or had EEG/SSEP abnormalities or MCA velocities < 15 cm/sec on TCD during clamping under GA. If the answer is “YES” to any of these, the patient is highly likely to suffer a stroke should ligation or endovascular coil embolisation of the carotid artery become necessary. Patch excision with autologous reconstruction (vein patch, bypass) remains the gold standard. Reconstruction with prosthetic material should be avoided because of high reinfection rates. Limited case reports (n = 18), but with good early and midterm results (10 — 60 months), suggest that selected patients may be treated with covered stents, especially in an emergency. Stent insertion can be combined with EndoVAC or wound drainage. The EndoVAC technique is a novel, three step strategy, involving relining the infected reconstruction with a stent graft, followed by debridement, vacuum assisted therapy, and long term antibiotic therapy to allow granulation and secondary healing. Where radical surgery or conservative management is not considered safe, EndoVAC may be an option. Carotid ligation should only be considered as a last resort, unless the artery is already thrombosed, or the patient tolerated carotid clamping at the original operation (see above). Peri-operative risks are increased (vs. primary CEA) and this needs to be discussed with the patient (mortality = 3.6%, stroke = 6.4%, CNI = 13%). The long term re-infection rate is 3.5% following autologous reconstruction.

Only nine carotid stent graft infections have been reported, culturing S. aureus, Streptococcus, and Candida. Clinical presentation included abscess/neck mass, bleeding, and septic embolisation. Treatment involves excision of infected material and autologous reconstruction. In four cases, stent grafts were removed without reconstruction (known carotid thrombosis). In another, stent excision was followed by EC-IC bypass. There were three peri-operative deaths, two strokes, one major bleeding event, and one late re-infection. ESVS recommendations regarding patch infection are similar to SVS and German-Austrian guidelines.

<table>
<thead>
<tr>
<th>Recommendation 99</th>
<th>Unchanged</th>
</tr>
</thead>
<tbody>
<tr>
<td>For patients with prosthetic patch infection or carotid stent infection excision and autologous venous reconstruction is recommended.</td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Level</td>
</tr>
<tr>
<td>I</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendation 100</th>
<th>Unchanged</th>
</tr>
</thead>
<tbody>
<tr>
<td>For patients with carotid patch or stent infection, excision and prosthetic reconstruction is not recommended.</td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Level</td>
</tr>
<tr>
<td>III</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendation 101</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>In selected high risk for surgery patients or emergency patients with suspected prosthetic patch infection, insertion of a covered stent may be considered, as part of the three stage EndoVAC technique.</td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Level</td>
</tr>
<tr>
<td>IIb</td>
<td>C</td>
</tr>
</tbody>
</table>
7.2.2. Re-stenosis after carotid interventions

7.2.2.1. Pathophysiology. "Recurrent" lesions within six weeks represent residual atherosclerotic disease. In a meta-analysis of 13 observational studies (n = 4 163 CEA and CAS patients), factors associated with re-stenosis after CEA included DM, dyslipidaemia, chronic kidney disease, SCS, stenosis > 70%, and primary arteriotomy closure. Female sex and smoking were associated with re-stenosis after CEA, but not after CAS. In a multivariable analysis of data from ICSS, older age, female sex, current or past smoking, non-insulin dependent DM, history of angina, a greater severity of stenosis in the contralateral carotid artery at randomisation, raised SBP and DBP at randomisation, and higher total serum cholesterol at randomisation increased the risk of re-stenosis independently of each other and for both CEA and CAS patients.

7.2.2.2. Duplex ultrasound criteria for diagnosing re-stenosis severity. DUS criteria for diagnosing re-stenosis may be different to diagnosing primary atherosclerotic stenoses. After CEA, it has been proposed that peak systolic velocity (PSV) thresholds for diagnosing > 50% re-stenosis should be 213 cm/sec and 274 cm/sec for > 70% re-stenosis. DU velocities after CAS are more difficult to interpret as the stent causes increased in stent velocities, even when fully deployed. Higher PSV thresholds have been proposed including > 220 cm/sec (ICA/CCA ratio ≥ 2.5) for diagnosing > 50% re-stenosis and > 300 cm/sec (end diastolic velocity ≥ 90 cm/sec; ICA/CCA ratio ≥ 3.8) for diagnosing > 70% re-stenosis. However, ICSS (which compared DU derived PSV with CTA in re-stenosis patients after CAS) found no evidence that PSV thresholds needed to be increased when diagnosing > 50%. The cost effectiveness of contralateral surveillance has, however, been questioned. In a series of 151 patients undergoing serial imaging of the non-operated ICA, cumulative freedom from stroke in the non-operated hemisphere was 99%, 96%, and 86% at one, five, and 10 years, respectively (mean stroke incidence 1% per year). No late stroke was associated with a > 70% contralateral ACS, indicating that none could have been prevented by surveillance. It would, however, be reasonable to offer DU surveillance to patients with > 50% contralateral ACS, as those progressing to a 60–99% stenosis with at least one clinical or imaging feature that make them higher risk of stroke on BMT, would then be considered for a carotid intervention (section 3.6).

<table>
<thead>
<tr>
<th>Author</th>
<th>Procedure</th>
<th>RCTs – n</th>
<th>Non-RCTs – n</th>
<th>Patients</th>
<th>Mean FU time</th>
<th>Re-stenosis >70% or occlusion (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kumar</td>
<td>Any CEA</td>
<td>11</td>
<td></td>
<td>4 249</td>
<td>47 mo</td>
<td>5.8% (4.1–8.2%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patched CEA</td>
<td>5</td>
<td></td>
<td>1 078</td>
<td>32 mo</td>
<td>4.1% (2.0–8.4%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAS or CA</td>
<td>6</td>
<td></td>
<td>2 916</td>
<td>60 mo</td>
<td>10.3% (6.4–16.4%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAS</td>
<td>5</td>
<td></td>
<td>2 716</td>
<td>62 mo</td>
<td>10.0% (6.0–16.3%)</td>
<td></td>
</tr>
<tr>
<td>Xin</td>
<td>CEA</td>
<td>15</td>
<td>12</td>
<td></td>
<td></td>
<td>2.04%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAS</td>
<td>15</td>
<td>12</td>
<td></td>
<td></td>
<td>4.12%</td>
<td></td>
</tr>
<tr>
<td>Xin</td>
<td>CEA vs. CAS</td>
<td>20 479</td>
<td></td>
<td>OR 0.49 (0.29–0.86)</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>CEA</td>
<td>15</td>
<td>12</td>
<td>1 578</td>
<td>120 mo</td>
<td>8.4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAS</td>
<td>15</td>
<td>12</td>
<td>1 610</td>
<td>120 mo</td>
<td>10.2%</td>
<td></td>
</tr>
<tr>
<td>Jung</td>
<td>CEA vs. CAS</td>
<td>8</td>
<td></td>
<td>OR 0.92 (0.42–2.04)</td>
<td>.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CEA</td>
<td>8</td>
<td></td>
<td>3 136</td>
<td>48 mo</td>
<td>8.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAS</td>
<td>8</td>
<td></td>
<td>3 869</td>
<td>48 mo</td>
<td>11.3%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CEA vs. CAS</td>
<td>2 798</td>
<td>10 y</td>
<td>OR 1.48 (0.93–2.35)</td>
<td>.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAS</td>
<td>8</td>
<td>10 y</td>
<td>2 757</td>
<td></td>
<td>7.1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CEA vs. CAS</td>
<td>2 798</td>
<td>10 y</td>
<td>OR 0.68 (0.48–0.97)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RCTs = randomised controlled trials; FU = follow up; OR = odds ratio; CI = confidence interval.

Table 34. Meta-analyses of rates of re-stenosis > 70% after carotid endarterectomy (CEA) and carotid artery stenting (CAS)

7.2.2.5. Incidence of re-stenosis after carotid interventions.
In a Cochrane review (nine RCTs; n = 5 477), CAS had statistically significantly higher re-stenosis rates > 50% than CEA (HR 2.0; 95% CI 1.12 – 3.6, p = .02).
Table 34 details rates of re-stenosis > 70% in various meta-analyses. In ICSS, the cumulative incidence of ≥ 50% re-stenosis at one year was 18.9% (patch closure), 26.1% (primary closure), and 17.7% after eCEA.
At five years, the cumulative incidence of re-stenosis ≥ 50% was 25.9%, 37.2%, and 30%, respectively. Primary arteriotomy closure incurred a statistically significantly higher risk of re-stenosis ≥ 50% than patch angioplasty (HR 1.45; 95% CI 1.06 – 1.98, p = .019), while there was no statistically significant difference in re-stenosis rates between patched and eCEA.

7.2.2.6. Asymptomatic re-stenosis and recurrent ipsilateral symptoms. Table 35 details stroke rates ipsilateral to an asymptomatic ≥ 70% re-stenosis from a meta-analysis of DUS surveillance involving seven RCTs (2 839 CEA patients) and four RCTs (1 964 CAS patients). The Principal Investigator of each RCT provided additional data about re-stenosis severity on the surveillance scan preceding stroke onset. The five year ipsilateral stroke was 0.8% in CAS patients with re-stenosis > 70% versus 2% without re-stenosis > 70% (OR 0.87; 95% CI 0.24 – 3.21, p = .83). By contrast, > 70% asymptomatic re-stenosis after CEA was associated with a higher risk of ipsilateral stroke (5.2%) at three years versus 1.2% without re-stenosis > 70% (OR 4.77; 95% CI 2.29 – 9.92).

7.2.2.7. Management of re-stenosis.
7.2.2.7.1. Symptomatic re-stenosis. No RCTs have been performed. It is, however, customary to adopt similar management to SCS patients with atherosclerotic stenoses (section 4.3). If a patient reports carotid territory symptoms with an ipsilateral 50–99% re-stenosis, they should be considered for redo CEA or CAS within 14 days of symptom onset. Recently symptomatic patients with < 50% ipsilateral re-stenosis should be treated medically unless they develop recurrent symptoms on BMT.

7.2.2.7.2. Asymptomatic re-stenosis. The management of asymptomatic re-stenosis is controversial, with no RCTs to guide practice. Despite being considered benign, a meta-analysis of 13 observational studies (n = 1 132) found that two thirds undergoing re-intervention were asymptomatic.
A meta-analysis (Table 35) suggested that patients with asymptomatic re-stenosis > 70% after CAS would gain little benefit from re-intervening, as stroke risks were very low (0.8% over four years) and 97% of late ipsilateral strokes involved patients with < 70% re-stenosis. Asymptomatic re-stenosis > 70% after CEA was associated with a 5.2% risk of ipsilateral stroke over three years. Operating on 100 patients might prevent five ipsilateral strokes, but at a cost of two to three peri-operative strokes, and 85% of late ipsilateral strokes would still occur in patients with re-stenosis < 70%.

7.2.2.7.3. Redo endarterectomy or stenting? Once a decision has been made to re-intervene, options include surgery (redo CEA, bypass) or CAS, neither tested in RCTs. In a meta-analysis (13 observational studies; 4 163 patients), 30 day stroke was 2.6% after redo CEA versus 2% after CAS (p = ns). Permanent CNI was 3.3% after redo CEA versus 0% after CAS.
In an SVS-VQI database on treating in stent re-stenosis after CAS (117 CEA; 511 redo CAS); 30 day stroke after CEA was 1.5% versus 1.4% after redo CAS (p = .91), while death/stroke was 4.5% after CEA versus 1.9% after redo CAS (p = .9).
8. MANAGEMENT OF CONCURRENT CORONARY AND CAROTID DISEASE

8.1. Stroke after cardiac surgery

The incidence of stroke after CABG is 1–2% and differentiation between intra- and post-operative stroke is helpful, as the aetiologies differ. Most intra-operative strokes (70–80%) follow thromboembolism, usually after aortic manipulation/cannulation. A minority (20–30%) follow hypoperfusion secondary to hypotension. Post-operative stroke within seven days is usually due to dysrhythmias, while those between seven and 30 days are usually due to generalised atherosclerosis. Peri-operative stroke also impacts on survival. In a meta-analysis of 174,000 cardiac operations, patients with intra-operative stroke had a 30 day mortality of 29%, versus 18% with post-operative stroke, versus 2.4% in patients with no stroke (p < .001). At eight years, mortality was 12% in patients with intra-operative stroke who survived 30 days versus 9% after post-operative stroke versus 3% with no stroke.

8.2. Is carotid disease an important cause of stroke during cardiac surgery?

The prevalence of > 50% carotid stenosis in CABG patients is 9%. The prevalence of stenosis > 80% is 7%. A meta-analysis of 106 observational studies reported that CABG patients with > 50% stenosis had a 7% risk of peri-operative stroke, increasing to 9% with > 80% stenosis. While these risks appear high (and supportive of a role for synchronous/staged carotid interventions), the data need to be interpreted carefully, as stroke risks vary with unilateral versus bilateral disease, symptomatic versus asymptomatic stenoses, and stenoses versus occlusion.

CABG patients with prior TIA/stroke or carotid occlusion have the highest rates of post-operative stroke. D’Agostino reported post-CABG stroke in 18% of patients with an unoperated symptomatic unilateral 70–99% stenosis, increasing to 26% with bilateral 70–99% stenoses (or contralateral occlusion). CABG patients with carotid occlusion had an 11% risk of post-CABG stroke. In a systematic review (106 observational cohorts) which excluded patients with occlusion (not candidates for CEA) and SCS patients, the risk of peri-operative stroke was ≤ 2% in patients undergoing isolated CABG with a unilateral (non-operated) 50–99% ACS, 70–99% ACS, or 80–99% ACS. In the same systematic review, 6.5% with bilateral 50–99% ACS had a post-CABG stroke, while 9.1% died or had a stroke. In a pooled series of 23,557 patients undergoing isolated CABG, 95% of 476 post-CABG strokes could not be attributed to carotid disease. A carotid bruit is a predictor of severe aortic arch disease, while > 70% stenosis is also an independent predictor of severe aortic
arch disease. In a 2019 systematic review of 36 observational studies \((n = 174,969)\), meta-regression analyses revealed that prior stroke was the most important predictor of peri-operative stroke \((p < .001)\), while carotid stenoses were not statistically significantly predictive \((p = .13)\). The evidence suggests no causal relationship between unilateral ACS and post-CABG stroke in most cases, that is, other aetiologies play a more important role, particularly aortic arch athero-embolism, for which ACS is a marker. As CABG patients increase in age, so too does the incidence of severe ACS, severe aortic arch disease, and post-CABG stroke (Table 36).

8.3. Screening cardiac surgery patients for asymptomatic carotid stenosis

Given the lack of a causal association between ACS and post-CABG stroke, routine screening for ACS before CABG cannot be supported. However, selective screening in CABG patients aged \(> 70\), or with a history of TIA or stroke, or who have a carotid bruit or left mainstem disease, allows the patient to be better informed about increased peri-operative mortality in CABG patients with concurrent carotid disease.

8.4. Are carotid interventions indicated in cardiac surgery patients?

In 22,355 patients in the Society of Thoracic Surgeons Adult Cardiac Surgery Database (where two thirds undergoing staged or synchronous carotid procedures were neurologically asymptomatic and 73% had unilateral ACS), there was no difference in in hospital stroke in patients undergoing CABG + CEA \((OR 0.93; 95\% CI 0.72 – 1.21, p = .60)\) or 30 day mortality \((OR 1.28; 95\% CI 0.97 – 1.69, p = .080)\), versus patients undergoing isolated CAGB. A similar observation was made for in hospital stroke \((OR 0.8; 95\% CI 0.37 – 1.69, p = .55)\) and 30 day mortality \((OR 0.78; 95\% CI 0.35 – 1.72, p = .54)\) in patients undergoing off bypass CAGB with/without CEA. In a review of 5,924 cardiac surgery patients, 2,482 underwent a pre-operative carotid DUS and 7.4% had a \(> 70\%\) carotid stenosis (majority unilateral and asymptomatic). Patients undergoing CEA prior to cardiac surgery had higher peri-operative stroke \((10.3\% \text{ vs.} 1.4\%)\) than after isolated CAGB in patients with confirmed or presumed normal ICAs \((p = .008)\), plus statistically significantly higher rates of peri-operative MI \((13.8\% \text{ vs.} 4.4\%; p < .001)\). Patients undergoing isolated CAGB with confirmed or presumed normal ICAs had similar rates of peri-operative stroke \((1.4\%)\) vs. 3.2% in CABG patients with known severe ICA disease who did not undergo CEA \((p > .050)\).

Two RCTs have evaluated synchronous or staged CEA in CABG patients with unilateral ACS. Illuminati randomised 185 patients with unilateral 70–99% ACS to CEA prior to or synchronous with CABG versus isolated CABG followed by deferred CEA. Thirty day mortality was 1% in each group, while 30 day death/stroke was 4% (deferred CEA) versus 1% (staged/synchronous CEA) \((p = ns)\). Ninety day death/stroke was 9% for deferred CEA versus 1% for staged/synchronous CEA \((p = .020)\). The authors concluded that prophylactic CEA was potentially beneficial in CABG patients with unilateral 70–99% ACS to reduce 90 day ipsilateral stroke, rather than peri-operative stroke.

8.5. What surgical and endovascular options are available?

Options include (1) staged CEA then CABG; (2) staged CABG then CEA; (3) synchronous CEA plus CABG; (4) staged CAS then CABG; and (5) same day CAS + CABG. Table 37 summarises data from meta-analyses of non-randomised studies. The majority (> 80%) were neurologically asymptomatic with unilateral ACS. Table 38 presents similar data from administrative dataset registries. Thirty day death/stroke ranged from 6% to 10% in predominantly ACS patients, with the highest rates of death/stroke being observed in patients with a history of stroke/TIA undergoing staged or synchronous CEA + CABG \((14\%)\) or CAS then CABG \((44\%)\). Performing CAGB off pump was associated with lower rates of post-CAGB stroke, possibly due to avoiding cannulation of a diseased aortic arch.

A 2017 meta-analysis of 31 observational studies included 2,727 patients undergoing staged or same day CAS-CABG, reported a 30 day death/stroke rate of 7.9%.

Table 36. Prevalence of post-coronary artery bypass grafting (CABG) stroke and its association with age and prevalence of carotid and aortic arch disease

<table>
<thead>
<tr>
<th>Age – y</th>
<th>Post-CABG stroke (^{557}) – %</th>
<th>Carotid stenosis (> 70%) on screening in males/females (^{206}) – %</th>
<th>Severe aortic arch disease (^{565}) – %</th>
</tr>
</thead>
<tbody>
<tr>
<td>50–59</td>
<td>1–2</td>
<td>0.2 / 0.1</td>
<td>9</td>
</tr>
<tr>
<td>60–69</td>
<td>2–3</td>
<td>0.8 / 0.2</td>
<td>18</td>
</tr>
<tr>
<td>70–79</td>
<td>4–7</td>
<td>2.1 / 1.0</td>
<td>22</td>
</tr>
<tr>
<td>(\geq 80)</td>
<td>8–9</td>
<td>3.1 / 0.9</td>
<td>33</td>
</tr>
</tbody>
</table>

\(^{*}\) Prevalence of carotid stenosis based on population screening (section 2.2.2.4) rather than screening in CABG patients.
The majority (80%) were neurologically asymptomatic with unilateral ACS, in whom 30 day death/stroke was 6.7%. Given the low risk of stroke attributable to unilateral ACS (section 8.2), it is unlikely that CAS + CABG will benefit CABG patients with unilateral ACS any more than CEA + CABG. Staged or same day CAS + CABG in patients with a history of TIA/stroke was associated with 15% rates of 30 day death/stroke.

In another meta-analysis of five observational studies, \(n = 16 \ 712 \), outcomes following synchronous CEA + CABG were compared with staged CAS followed by CABG in patients with ACS and SCS (Table 37). Rates of peri-operative stroke (3.0% vs. 3.0%) and MI (5.0% vs. 5.0%) were not substantially different, but patients undergoing synchronous CEA + CABG incurred higher mortality (OR 1.8; 95% CI 1.05 – 3.06). The need for aspirin + clopidogrel combination APRx with CAS can complicate staged CAS-CABG, as it increases MI risk during the delay between each procedure and increases bleeding risks during CABG. Evidence suggests that CAS can be performed on the same day as CABG using aspirin or heparin, with thienopyridine APRx starting 6 – 12 hours after CABG.

The Agency for Healthcare Research and Quality Healthcare Cost and Utilisation Project evaluated outcomes in 22 \(501 \) CABG patients (95% ACS, 5% SCS): (i) 15402 (68%) had synchronous CEA + CABG; (ii) 6297 (28%) staged CEA then CABG, while (iii) 802 (4%) had staged CAS then CABG. Peri-operative stroke rates were comparable (synchronous CEA + CABG 2.8%; staged CEA + CABG 1.9%; staged CAS + CABG 3.0%; \(\text{p}_{\text{trend}} = 0.37 \)), but adjusted stroke rates were lower in both surgical groups versus

Table 37. Meta-analyses of 30 day outcomes from non-randomised studies regarding revascularisation strategies in patients with combined carotid and cardiac disease

<table>
<thead>
<tr>
<th>Study</th>
<th>Patients – n</th>
<th>Death – %</th>
<th>Stroke – %</th>
<th>MI – %</th>
<th>Death / stroke – %</th>
<th>Death / stroke / MI – %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staged CEA then CABG, all</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brener 1996(^{572})</td>
<td>407</td>
<td>9.4</td>
<td>5.3</td>
<td>11.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borger 1999(^{573})</td>
<td>920</td>
<td>2.9</td>
<td>3.2</td>
<td>5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nayyar 2003(^{574})</td>
<td>917</td>
<td>3.9</td>
<td>2.5</td>
<td>6.5</td>
<td>6.1</td>
<td>10.2</td>
</tr>
<tr>
<td>Sharma 2014(^{575})</td>
<td>7 552</td>
<td>3.4</td>
<td>1.9</td>
<td>6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staged CABG then CEA, all</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brener 1996(^{572})</td>
<td>2308</td>
<td>5.6</td>
<td>6.2</td>
<td>4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borger 1999(^{573})</td>
<td>844</td>
<td>4.7</td>
<td>6.0</td>
<td>9.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nayyar 2003(^{574})</td>
<td>7 753</td>
<td>4.6</td>
<td>4.6</td>
<td>3.6</td>
<td>8.7</td>
<td>11.5</td>
</tr>
<tr>
<td>Sharma 2014(^{575})</td>
<td>17 469</td>
<td>4.0</td>
<td>4.3</td>
<td>3.6</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>Synchronous CEA and CABG, all</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brener 1996(^{572})</td>
<td>2 308</td>
<td>5.6</td>
<td>6.2</td>
<td>4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borger 1999(^{573})</td>
<td>844</td>
<td>4.7</td>
<td>6.0</td>
<td>9.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nayyar 2003(^{574})</td>
<td>7 753</td>
<td>4.6</td>
<td>4.6</td>
<td>3.6</td>
<td>8.7</td>
<td>11.5</td>
</tr>
<tr>
<td>Giannopoulos 2019(^{57})</td>
<td>16 712</td>
<td>4.0</td>
<td>3.0</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchronous CEA and CABG, symptomatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nayyar 2003(^{576})</td>
<td>514</td>
<td>5.8</td>
<td>6.8</td>
<td>1.9</td>
<td>7.6</td>
<td>8.1</td>
</tr>
<tr>
<td>Synchronous CEA and CABG, asymptomatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nayyar 2003(^{576})</td>
<td>925</td>
<td>3.6</td>
<td>3.7</td>
<td>2.2</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Synchronous CEA and CABG, off bypass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fareed 2009(^{571})</td>
<td>324</td>
<td>1.5</td>
<td></td>
<td></td>
<td>2.2</td>
<td>3.6</td>
</tr>
<tr>
<td>Synchronous CEA and CABG, pre bypass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nayyar 2003(^{576})</td>
<td>5 386</td>
<td>4.5</td>
<td>4.5</td>
<td>3.6</td>
<td>8.2</td>
<td>11.5</td>
</tr>
<tr>
<td>Synchronous CEA and CABG, on bypass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nayyar 2003(^{576})</td>
<td>844</td>
<td>4.7</td>
<td>2.1</td>
<td>2.9</td>
<td>8.1</td>
<td>9.5</td>
</tr>
<tr>
<td>Same day CAS and CABG, all</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraskevas 2017(^{577})</td>
<td>531</td>
<td>4.5</td>
<td>3.4</td>
<td>1.8</td>
<td>5.9</td>
<td>6.5</td>
</tr>
<tr>
<td>Staged CAS-CABG, all</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guzman 2008(^{578})</td>
<td>277</td>
<td>6.8</td>
<td>7.6</td>
<td></td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td>Nayyar 2009(^{579})</td>
<td>760</td>
<td>4.2</td>
<td>5.5</td>
<td>1.8</td>
<td>9.1</td>
<td>9.4</td>
</tr>
<tr>
<td>Paraskevas 2017(^{577})</td>
<td>2 196</td>
<td>4.8</td>
<td>5.4</td>
<td>4.2</td>
<td>8.5</td>
<td>11.0</td>
</tr>
<tr>
<td>Giannopoulos 2019(^{57})</td>
<td>985</td>
<td>2.0</td>
<td>3.0</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* MI = myocardial infarction; CABG = coronary artery bypass graft; CAS = carotid stenting; CEA = carotid endarterectomy; off bypass means CABG done without cardiopulmonary bypass; pre-bypass, on bypass indicates when CEA was performed relative to cardiopulmonary bypass.
In summary, the literature supports staged or synchronous carotid interventions in CABG patients with a prior history of stroke/TIA or in patients with bilateral 70–99% ACS, or 70–99% ACS with contralateral occlusion.

8.6. Managing patients with unstable coronary artery disease

The Carotid Artery Revascularisation and Endarterectomy (CARE) registry involved 255 urgent CABG patients undergoing CAS and 196 undergoing CEA. Thirty day death/stroke/MI was 15% after CAS versus 22% after CEA. CARE did not differentiate between staged or synchronous CEA +

Table 38. Thirty day procedural risks after carotid endarterectomy (CEA) or carotid artery stenting (CAS) and coronary artery bypass grafting (CABG) stratified for treatment strategy in administrative dataset registries

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Registry</th>
<th>Patients – n</th>
<th>Death – %</th>
<th>Stroke – %</th>
<th>Death / stroke – %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staged CEA and CABG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All cases</td>
<td>Gopaldas 2011</td>
<td>6 153</td>
<td>4.2</td>
<td>3.5</td>
<td>7.1</td>
</tr>
<tr>
<td>Off bypass</td>
<td>Gopaldas 2011</td>
<td>2 004</td>
<td>4.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>On bypass</td>
<td>Gopaldas 2011</td>
<td>4 149</td>
<td>4.3</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>Staged or synchronous CEA and CABG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All cases</td>
<td>Dubinsky 2007</td>
<td>7 073</td>
<td>5.6</td>
<td>4.9</td>
<td>9.7</td>
</tr>
<tr>
<td>Symptomatic*</td>
<td>Timaran 2008</td>
<td>25 249</td>
<td>5.4</td>
<td>3.9</td>
<td>8.6</td>
</tr>
<tr>
<td>Synchronous CEA and CABG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All cases</td>
<td>Gopaldas 2011</td>
<td>16 629</td>
<td>4.5</td>
<td>3.9</td>
<td>7.7</td>
</tr>
<tr>
<td>Off bypass</td>
<td>Gopaldas 2011</td>
<td>5 280</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On bypass</td>
<td>Gopaldas 2011</td>
<td>11 359</td>
<td>4.5</td>
<td>3.9</td>
<td>7.4</td>
</tr>
<tr>
<td>Staged CAS then CABG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All cases</td>
<td>Feldman 2017</td>
<td>802</td>
<td>1.9</td>
<td>3.0</td>
<td>4.2</td>
</tr>
<tr>
<td>Symptomatic*</td>
<td>Timaran 2008</td>
<td>25</td>
<td></td>
<td></td>
<td>44</td>
</tr>
</tbody>
</table>

NIS = National Inpatient Sample; STS ACSD = Society of Thoracic Surgeons Adult Cardiac Surgery Database.

* Prior stroke or transient ischaemic attack.

In summary, the literature supports staged or synchronous carotid interventions in CABG patients with a prior history of stroke/TIA and in patients with bilateral 70–99% ACS, or 70–99% ACS with contralateral occlusion.
CABG, regional practice variations existed, and 60% of interventions involved ACS patients.\(^{562}\)

Recommendation 109

For patients undergoing open heart surgery, routine screening for carotid disease is not recommended.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>C</td>
<td>Consensus</td>
<td></td>
</tr>
</tbody>
</table>

Recommendation 110

For patients undergoing coronary artery bypass surgery, duplex ultrasound screening for carotid disease should be considered in patients aged >70 years, and those with a history of transient ischaemic attack or stroke or who have a carotid bruit or left mainstem disease, so that the patient can be better informed of the increased risks associated with coronary artery bypass if they have concurrent carotid disease.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ila</td>
<td>C</td>
<td>Naylor et al. (2002)(^{567}), Aboyans et al. (2009)(^{566})</td>
<td></td>
</tr>
</tbody>
</table>

Recommendation 111

For coronary artery bypass surgery patients with a history of stroke or transient ischaemic attack in the preceding six months and a 50–99% carotid stenosis, a staged or synchronous carotid intervention should be considered.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ila</td>
<td>B</td>
<td>Naylor et al. (2002)(^{567}), D’Agostino et al. (1996)(^{559})</td>
<td></td>
</tr>
</tbody>
</table>

Recommendation 112

For coronary artery bypass surgery patients with a history of stroke or transient ischaemic attack in the preceding six months and a 50–99% carotid stenosis, a staged or synchronous carotid endarterectomy should be considered instead of carotid stenting plus coronary bypass surgery.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ila</td>
<td>B</td>
<td>Timaran et al. (2008)(^{125}), Naylor et al. (2003)(^{124}), Paraskevas et al. (2017)(^{77}), Naylor et al. (2009)(^{559})</td>
<td></td>
</tr>
</tbody>
</table>

Recommendation 113

For coronary artery bypass surgery patients with an asymptomatic unilateral 70–99% carotid stenosis, a staged or synchronous carotid intervention is not recommended for the prevention of post-operative stroke.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>B</td>
<td>Naylor et al. (2011)(^{559}), Klarin et al. (2020)(^{567}), Ashrafi et al. (2016)(^{558})</td>
<td></td>
</tr>
</tbody>
</table>

The German-Austrian guidelines made no recommendation regarding CABG patients with a unilateral 70–99% ACS, while the rest were identical to ESVS.\(^{3}\) The SVS recommendations were also identical to ESVS, the only exception being that SVS indicated that managing CABG patients with unilateral 70–99% ACS was controversial but did not make any further recommendation.\(^{4}\)

9. CAROTID DISEASE AND MAJOR NON-CARDIAC SURGERY

Vascular surgeons are often asked whether prophylactic CEA or CAS should be considered in ACS patients scheduled for major non-cardiac surgery, to prevent peri-operative stroke.

9.1. Incidence of stroke after major non-cardiac surgery

The incidence of peri-operative stroke depends on the nature and complexity of the procedure, risk factors and timing after recent TIA/stroke (Table 39). The incidence of stroke was < 1% in all but two cohorts, suggesting that stroke is rarely a problem after major non-cardiac surgery.

9.2. Predicting stroke after major non-cardiac surgery

Table 40 summarises predictors for peri-operative stroke after non-cardiac surgical procedures. The most consistent were increasing age and a history of stroke.

9.3. Timing of major surgery after recent stroke

In a study of 481 183 adults undergoing elective, non-cardiac surgery, 7 137 (1.5%) had a history of stroke, in whom the rate of peri-operative stroke was 11.9% if operations were performed within three months of the stroke, declining to 4.5% where three to six months had elapsed and 1.8% where six to 12 months had elapsed versus 0.1% in patients with no history of stroke.\(^{585}\)
Table 39. Incidence of peri-operative stroke stratified for type of procedure

<table>
<thead>
<tr>
<th>Author</th>
<th>Population</th>
<th>Subpopulation</th>
<th>Patients – n</th>
<th>Stroke risk – %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axelrod</td>
<td>Major vascular surgery</td>
<td>Aortic operations</td>
<td>5 296</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower limb bypasses</td>
<td>7 299</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Major amputations</td>
<td>7 442</td>
<td>0.6</td>
</tr>
<tr>
<td>Sharifpour</td>
<td>Major vascular surgery</td>
<td>Major amputations</td>
<td>8 077</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower limb bypasses</td>
<td>21 962</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open aortic</td>
<td>7 888</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EVAR</td>
<td>9 823</td>
<td>0.5</td>
</tr>
<tr>
<td>Jorgensen</td>
<td>Non-cardiac, including vascular</td>
<td>Aortic operations</td>
<td>481 113</td>
<td>0.1</td>
</tr>
<tr>
<td>Sonny</td>
<td>Non-cardiac, including vascular</td>
<td>Aortic operations</td>
<td>2 110</td>
<td>2.6</td>
</tr>
<tr>
<td>Kikura</td>
<td>General, orthopaedic, thoracic, non-carotid vascular</td>
<td>Aortic operations</td>
<td>36 634</td>
<td>0.3</td>
</tr>
<tr>
<td>Parviz</td>
<td>Knee arthroplasty</td>
<td></td>
<td>1 636</td>
<td>0.4</td>
</tr>
<tr>
<td>Bateman</td>
<td>Hemicolecotomy</td>
<td></td>
<td>131 067</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Hip replacement</td>
<td></td>
<td>201 235</td>
<td>0.2</td>
</tr>
<tr>
<td>Huang</td>
<td>Caesarean section</td>
<td></td>
<td>39 339</td>
<td>0.6</td>
</tr>
<tr>
<td>Mashour</td>
<td>Non-cardiac (low risk) general, orthopaedic, urology, ENT, plastics, thoracic, gynaecology</td>
<td>EVAR</td>
<td>303 862</td>
<td>0.05</td>
</tr>
<tr>
<td>Biterk</td>
<td>Non-cardiac, non-vascular</td>
<td></td>
<td>523 059</td>
<td>0.1</td>
</tr>
</tbody>
</table>

EVAR = endovascular aortic aneurysm repair; ENT = ear, nose, and throat.

9.4. Is there a role for prophylactic carotid endarterectomy or stenting?

Patients undergoing major non-cardiac surgery with three to four cardiovascular risk factors (age, CAD, renal failure, hypertension, DM, smoking, BMI > 35 kg/m², COPD, prior stroke/TIA) had a 0.7% risk of peri-operative stroke. With at least five risk factors, peri-operative stroke increased to 1.9%, emphasising the need for careful risk stratification and potential intervention strategies such as prophylactic carotid endarterectomy or stenting to mitigate the risk.

Table 40. Predictors for peri-operative stroke following major non-cardiac procedures

<table>
<thead>
<tr>
<th>Author</th>
<th>Population</th>
<th>Stroke predictors</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axelrod</td>
<td>Major vascular surgery</td>
<td>Aortic operation vs. lower extremity</td>
<td>1.7 (1.0–2.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Each 1 y increase in age</td>
<td>1.02 (1.01–1.04)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cardiac history vs. none</td>
<td>1.4 (1.1–1.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female sex vs. male</td>
<td>1.5 (1.1–1.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>History of stroke vs. no stroke</td>
<td>1.7 (1.3–2.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acute/chronic renal failure vs. no history</td>
<td>2.0 (1.4–3.0)</td>
</tr>
<tr>
<td>Kikura</td>
<td>General, orthopaedic, thoracic, non-carotid vascular</td>
<td>Age >70 y vs. <70 y</td>
<td>23.6 (9.6–58.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diabetes vs. no diabetes</td>
<td>2.2 (1.4–3.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coronary disease vs. none</td>
<td>2.3 (1.3–4.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCF vs. no CCF</td>
<td>1.7 (1.1–2.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AF vs. no AF</td>
<td>5.5 (2.8–10.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prior stroke vs. no stroke</td>
<td>7.1 (4.6–11)</td>
</tr>
<tr>
<td>Bateman</td>
<td>Hemicolecotomy, hip replacement, lung resection</td>
<td>Renal impairment vs. none</td>
<td>3.0 (2.5–3.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AF vs. no AF</td>
<td>2.0 (1.7–2.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prior stroke vs. no stroke</td>
<td>1.6 (1.3–2.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valvular heart disease vs. none</td>
<td>1.5 (1.3–1.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCF vs. no CCF</td>
<td>1.4 (1.2–1.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diabetes vs. no diabetes</td>
<td>1.2 (1.0–1.4)</td>
</tr>
<tr>
<td>Mashour</td>
<td>Non-cardiac, non-neurosurgery, general, orthopaedics, urology, ENT, plastics, thoracic, gynaecology, minor vascular</td>
<td>Acute renal failure vs. none</td>
<td>3.6 (2.3–5.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>History of stroke vs. none</td>
<td>2.9 (2.3–3.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>History of TIA vs. none</td>
<td>1.9 (1.3–2.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On dialysis vs. not on dialysis</td>
<td>2.1 (1.6–3.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypertension vs. no</td>
<td>2.0 (1.6–2.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COPD vs. no COPD</td>
<td>1.8 (1.4–2.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Smoking vs. non smoking</td>
<td>1.5 (1.1–1.9)</td>
</tr>
<tr>
<td>Biterk</td>
<td>Non-cardiac, non-vascular</td>
<td>History of stroke vs. no stroke</td>
<td>3.6 (1.2–4.8)</td>
</tr>
<tr>
<td>Jorgensen</td>
<td>Non-cardiac</td>
<td>Stroke <3 mo vs. no stroke</td>
<td>67.6 (52.3–87.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke 3–6 mo vs. no stroke</td>
<td>24.0 (15.0–38.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke 6–12 mo vs. no stroke</td>
<td>10.4 (6.2–17.4)</td>
</tr>
</tbody>
</table>

BMI = body mass index; OR = odds ratio; CI = confidence interval; CCF = congestive cardiac failure; AF = atrial fibrillation; TIA = transient ischaemic attack; COPD = chronic obstructive pulmonary disease; ENT = ear, nose and throat operations.
importance of optimising cardiovascular risk prior to major non-cardiac surgery. Most strokes were ischaemic and secondary to cardiac embolism. The perioperative period also involves complex haemodynamic stresses involving hypercoagulable and systemic inflammatory responses, which increase the risks of perioperative stroke, especially if anticoagulation or antiplatelet therapies are withdrawn.

ACS patients undergoing major non-cardiac surgery were evaluated in one RCT and one observational study. Seventy nine patients with 70–99% ACS were randomised to CEA within one week of the scheduled procedure (n = 40) versus deferred CEA (n = 39). There were no peri-operative deaths/strokes in either group. An observational study evaluated whether ACS predisposed patients undergoing non-cardiac surgery to increased peri-operative stroke. Overall, 54% (3) suffered a stroke. Neither of the ACS stenosis thresholds (50%, 70%) were associated with increased rates of peri-operative stroke. It is, of course, possible that ACS patients with impaired CVR may be at higher risk of stroke after major non-cardiac surgery, but no association has been proven.

The Society of Thoracic Surgeons and American College of Cardiology evaluated whether carotid disease increased stroke rates in 29 143 patients undergoing transcatheter aortic valve replacement, where 22% had a carotid stenosis > 50%. In hospital stroke was 2% in patients with no stenosis, 2.5% with moderate stenoses, 3% with severe stenosis, and 2.6% with carotid occlusion. The Registry concluded there was no association between carotid disease and stroke after transcatheter aortic valve replacement.

Recommendation 118
For patients with a history of prior stroke and no significant carotid artery disease, it is recommended that, where possible, elective non-cardiac surgery should be delayed by 6 months. The decision to proceed with semi-urgent elective surgery will have to be individualised, based upon the underlying pathology.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>B</td>
<td>Jorgensen et al. (2014)</td>
</tr>
</tbody>
</table>

Recommendation 119
For asymptomatic patients undergoing non-cardiac surgery procedures, routine carotid imaging is not recommended.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>B</td>
<td>Azelrod et al. (2004), Sharifpour et al. (2013)</td>
</tr>
</tbody>
</table>

Recommendation 120
For patients undergoing major non-cardiac surgical procedures, it is recommended that they should undergo a comprehensive cardiovascular risk assessment to aid the Consent process regarding the risk of peri-operative stroke.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>B</td>
<td>Mashour et al. (2011), Mashour et al. (2014)</td>
</tr>
</tbody>
</table>

Recommendation 121
For patients with asymptomatic 50–99% carotid stenoses undergoing a major non-cardiac procedure, it is recommended not to stop statin therapy prior to surgery. Antithrombotic therapy withdrawal should be based on an assessment of thromboembolic and haemorrhagic risks.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>B</td>
<td>Huang et al. (2010), Mashour et al. (2014)</td>
</tr>
</tbody>
</table>

Recommendation 122
For patients with an asymptomatic 50–99% carotid stenosis undergoing a major non-cardiac surgical procedure, prophylactic carotid endarterectomy or carotid stenting is not recommended.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>B</td>
<td>Sonny et al. (2014), Ballotta et al. (2005)</td>
</tr>
</tbody>
</table>

The German-Austrian guidelines made no comment about managing patients with carotid stenoses scheduled to undergo major, non-cardiac procedures. The SVS guidelines simply stated that patients with carotid disease undergoing non-cardiac surgery should have the same indications for intervention as the general population, without clarifying what this meant.
10. OCCLUSIVE DISEASE OF COMMON CAROTID AND INNOMINATE ARTERIES

10.1. Introduction

The incidence of stenosis or occlusion at the aortic arch branch vessel origins is 0.5–6.4%, with a higher frequency in the innominate (IA) and left subclavian arteries versus left CCA. CCA occlusion occurs in 2–4% undergoing angiography for cerebrovascular disease. Patients with a symptomatic branch origin stenosis have a 2% annual risk of developing a stenosis in other arch vessels, while tandem disease of the carotid bifurcation occurs in 17%. CCA occlusion occurs in 2

10.2. Clinical presentation

Left CCA lesions cause left hemisphere and left retinal symptoms. Left subclavian lesions cause VB, or left arm symptoms, while IA lesions can affect the right carotid, VB, and right arm. Most are atherosclerotic, but arteritis and dissection are more common in younger patients.

10.3. Indications for revascularisation

The natural history of isolated CCA and IA disease is unknown. In patients with neurological symptoms or upper limb ischaemia, indications for revascularisation are straightforward. There is no evidence supporting open or endovascular interventions in asymptomatic patients.

10.4. Endovascular versus open reconstruction

Historically, treatment of supra-aortic disease was mainly possible via open surgery, involving bypasses from the arch or subclavian artery, CCA transposition or CCA endarterectomy. CCA transposition to the subclavian artery provides direct autogenous revascularisation but may not always be feasible. CCA endarterectomy can be performed via open or retrograde semi-closed endarterectomy. A meta-analysis of 77 observational studies (n = 1 969) evaluated 30 day and midterm outcomes in patients with stenoses affecting the proximal CCA or IA who underwent isolated open surgery (n = 686) or an isolated endovascular approach (n = 583). In the open surgery group (78% involving IA), the 30 day death/stroke was 7%, with a late ipsilateral stroke rate of 1% at a median 12 years follow up. Late re-stenosis within bypasses arising from the aortic arch was 2.6%. In the isolated endovascular group (52% IA), the majority (84%) were done percutaneously, with 30 day death/stroke rates of 1.5%. Late ipsilateral stroke was 1% at a median four years follow up with a 9% re-stenosis rate. In a VSGNE audit of outcomes after a totally endovascular approach to treating tandem stenoses/occlusions of the innominate or proximal CCA and stenoses of the ipsilateral ICA in asymptomatic patients (not included in Robertson’s meta-analysis), 30 day death/stroke was significantly higher compared with stenting isolated asymptomatic ICA stenoses (OR 1.85; 95% CI 1.03 – 3.33, p = .039).

10.5. Open revascularisation: cervical versus transthoracic

Options include bypass via a transthoracic route (median sternotomy or trapdoor incision), or an extrathoracic (cervical) approach. Cervical reconstructions are less invasive with fewer risks. Patients with isolated subclavian or CCA lesions (with a patent ipsilateral carotid or subclavian artery) should undergo transposition or bypass via a cervical approach. Saphenous vein was previously the preferred conduit, but it is often small calibre and prone to kinking versus prosthetic grafts, which offer durable patency and low morbidity. At the other extreme is the patient with involvement of three arch branches, where graft outflow must arise from the aorta via a median sternotomy. Trans-thoracic reconstructions can be performed with acceptable low morbidity/mortality, and better long term patency.

10.6. Tandem proximal inflow and internal carotid artery disease

Tandem disease refers to lesions affecting the IA or proximal CCA in the presence of notable disease of the ipsilateral ICA. Most now undergo a hybrid approach, where open retrograde angioplasty/stenting of the IA or proximal CCA is followed by CEA of the ipsilateral ICA. In a systematic review (n = 700), 30 day death/stroke was 3.3%, with a late ipsilateral stroke rate of 3.3% at a median six year follow up. Late re-stenosis was 10.5% for proximal CCA or IA and 4.1% in the ICA. In symptomatic patients, data cautiously support an endovascular first strategy for isolated proximal CCA or IA lesions with a hybrid approach for tandem CCA or IA and ICA stenoses. ESVS recommendations regarding the management of patients with tandem IA or proximal CCA and bifurcation disease, are the same as 2021 SVS recommendations.

Class Level References

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>C</td>
<td>Consensus</td>
</tr>
</tbody>
</table>

Recommendation 123

For asymptomatic patients with proximal common carotid artery or innominate artery stenoses/occlusions, open or endovascular interventions are not recommended.

Recommendation 124

For symptomatic patients with proximal common carotid artery or innominate stenoses, open retrograde angioplasty and stenting should be considered.

11. MANAGEMENT OF ASYMPTOMATIC VERTEBRAL ARTERY DISEASE

11.1. Optimal medical therapy

No RCTs have evaluated the effects of APRx, statin, or antihypertensive therapy in patients with asymptomatic VA
stenoses. Accordingly, it is reasonable to adopt the same BMT recommendations as for ACS patients (section 3.1).

11.2. Screening for asymptomatic vertebral artery disease

No RCTs have evaluated VA screening. Accordingly, it is reasonable to adopt the same strategy as for ACS (section 3.2).

11.3. Interventions for asymptomatic vertebral artery disease

Within a cohort of 3,717 patients with atherosclerotic disease in the SMART Registry, 7.6% had an asymptomatic VA stenosis > 50%, in whom the annual stroke risk was only 0.2%.

Recommendation 125

For patients with asymptomatic vertebral artery atherosclerotic lesions, open or endovascular interventions are not recommended.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>C</td>
<td>Compter et al. (2011)</td>
</tr>
</tbody>
</table>

12. MANAGEMENT OF SYMPTOMATIC VERTEBRAL ARTERY DISEASE

12.1. Aetiology of vertebrobasilar stroke

About 20% of ischaemic strokes are VB, mostly due to cardioembolism, LAA, and small vessel disease. Atherosclerosis of VAs or basilar arteries (BA) accounts for 20–25% of VB strokes. Stenoses mainly occur at the VA origin but can affect distal or intracranial VAs and BAs. Intracranial stenoses are more common with sub-Saharan or East-Asian ethnic origins. A haemodynamic aetiology was thought to be the most common cause of VB symptoms. However, in a prospective registry, only 13/407 patients (3%) had symptoms due to haemodynamic ischaemia and this was most commonly seen in patients with bilateral intracranial VA disease. Cardiac embolism (usually AF) accounted for 25% of strokes/TIAs, with 25% being due to disease of small penetrating arteries arising from the intracranial VA, BA, and PCA arteries, causing lacunar stroke. Thromboembolism was the main cause of symptoms with VA stenoses.

Recommendation 126

For patients with suspected vertebrobasilar ischaemia, computed tomographic angiography or contrast enhanced magnetic resonance angiography is recommended as the first line vascular imaging modality.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>B</td>
<td>Khan et al. (2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Davis et al. (1986)</td>
</tr>
</tbody>
</table>

12.4. Optimal medical therapy

No RCTs have evaluated APRx, statin, or antihypertensive therapy in symptomatic VA stenosis patients. It is reasonable to adopt the same recommendations as for SCS patients (section 4.2).

12.5. Role of vertebral revascularisation in positional vertigo

A diagnosis of positional VB ischaemia is often assumed in patients with dizziness or vertigo during neck movement. However, the syndrome is overdiagnosed, usually without further investigation. A systematic review reported no changes in VA or PCA flow in seven series, while 13 described varying changes (reversal, occlusion, reduced flow). In a study involving 46 patients with a TCD window who presented with dizziness or vertigo on head movement, none had changes in extracranial VA flow during head movement, none had reversal of VA flow and there were no changes in PCA flow (directionality or flow velocities) during head turning. Most symptoms relating to head/neck movement have other causes, including benign paroxysmal positional vertigo, vestibular neuritis, and (occasionally) exacerbation of vertigo associated with migraine. In a
single centre experience, 74% were referred to a Balance Clinic, where 94% improved following a vestibular rehabilitation programme.609

Recommendation 127 Unchanged

For patients with vertigo or dizziness on head turning, it is recommended that a diagnosis of vertebrobasilar ischaemia (attributed to nipping of the vertebral arteries on head movement) should not be made, unless corroborated by vascular imaging showing clear disruption of blood flow during head turning.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIa</td>
<td>A</td>
<td>Mitchell et al. (2007)608, Sultan et al. (2009)609, Chandratheva et al. (2021)610</td>
<td></td>
</tr>
</tbody>
</table>

12.6. Interventions in recently symptomatic patients

12.6.1. Non-randomised studies. The 90 day risk of recurrent VB stroke was 7% in the absence of VA disease, 16% with extracranial VA stenoses, and 33% with intracranial VA or BA stenoses.611 In a review of 600 patients with symptomatic VA stenoses treated by angioplasty/stenting, intracranial stenting incurred higher procedural stroke risks (10.6%) versus extracranial VA stenoses (1.3%).612

12.6.2. Randomised studies

12.6.2.1. Meta-analysis of randomised trials. Table 41 details an individual patient meta-analysis of data from 354 symptomatic patients with 50–99% VA stenoses who were randomised within VIST, VAST, and SAMMPRIS.29,613,614 There were no data from VISSIT (did not collaborate) or CAVATAS (VA angioplasty only).615 Of 168 BMT patients, 46 had intracranial VA stenoses and 122 had extracranial VA stenoses. In the stented cohort, 64 had intracranial VA stenoses and 121 had extracranial VA stenoses. Mean age was 66 years and 80% were male. There were higher peri-operative rates of stroke/death after stenting (vs. BMT), with statistically significant differences between extracranial and intracranial stenting (1% vs. 16%; p < .001). At five years, there were no differences in stroke rates between stenting and BMT.616 In the carotid literature, interventions conferred maximum benefit if performed early (section 4.5). A subgroup analysis was undertaken in 161 patients randomised within 14 days of the most recent event. Stenting (vs. BMT) was associated with non-statistically significant reductions in cumulative stroke (HR 0.65; 95% CI 0.31–1.39), including in patients with extracranial VA stenoses (HR 0.56; 95% CI 0.17–1.87) and intracranial VA stenoses (HR 0.72; 95% CI 0.27–1.90, interaction value = .77).616 There are, however, limitations regarding this meta-analysis. SAMMPRIS patients were randomised more quickly after symptom onset (10 days) than in VIST or VAST (36 days) and there were imbalances in prescribing combination APRx. Stent cohorts were more likely to receive DAPT than BMT patients. The current evidence indicates that stenting intracranial VA stenoses carries a higher risk of death/stroke than stenting extracranial VA stenoses and that there is currently no evidence that stenting confers benefit over BMT.

Recommendation 128 New

For patients presenting with a vertebrobasilar territory transient ischaemic attack or stroke and a 50–99% vertebral artery stenosis, routine stenting is not recommended.

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
<th>References</th>
<th>ToE</th>
</tr>
</thead>
</table>

The SVS guidelines advise that in low risk symptomatic patients with proximal VA stenoses, open surgical revascularisation is recommended.6 However, no mention was made about managing a VA stenosis beyond its origin or on the role of VA stenting. The 2021 AHA guidelines advise there is no proven role for VA stenting in symptomatic patients.1 12.6.3. Endovascular techniques 12.6.3.1. Adjuvant medical therapy. Protocols regarding APRx, statins and i.v. heparin are as for CAS (sections 3.1 and 4.2).

Table 41: Main findings of meta-analysis of three randomised controlled trials (RCTs) comparing extracranial (EC) and intracranial (IC) vertebral artery (VA) stenting with best medical therapy (BMT) alone

<table>
<thead>
<tr>
<th></th>
<th>30 d death or stroke</th>
<th>HR (95% CI) stent vs. BMT</th>
<th>Cumulative 5 y stroke</th>
<th>HR (95% CI) stent vs. BMT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stenting</td>
<td>BMT</td>
<td>Stenting</td>
<td>BMT</td>
</tr>
<tr>
<td>All patients</td>
<td>11 / 185 (5.9)</td>
<td>4 / 168 (2.4)</td>
<td>2.20 (0.70–6.96)</td>
<td>23 / 186 (12)</td>
</tr>
<tr>
<td>EC VA stenosis</td>
<td>1 / 121 (1)</td>
<td>0.33 (0.03–3.18)</td>
<td></td>
<td>0.63 (0.27–1.46)</td>
</tr>
<tr>
<td>IC VA stenosis</td>
<td>10 / 64 (16)</td>
<td>7.46 (0.95–58.69)</td>
<td></td>
<td>1.06 (0.46–2.42)</td>
</tr>
</tbody>
</table>

Data are presented as n (%) unless stated otherwise.

HR = hazard ratio; CI = confidence interval.

* Data derived from Markus et al.67.
12.6.3.2. Access. Most are performed under LA via the CFA (93%), although transbrachial (3%) and TRA (5%) have been used.615

12.6.3.3. Wires, catheters, and stent design. A 5F or 6F guiding catheter or long access sheath (if working via CFA) is navigated to a stable position in the subclavian artery. The VA ostium is cannulated, and the lesion crossed with .014” or .018” guide wires and treated using small balloons and stents. Monorail and over the wire systems are available. The former uses standard length wires, making catheter exchanges simpler. Dedicated VA stents are not available and coronary balloon expandable stents (BES) are used because of a low crossing profile, limited foreshortening, and easier navigation through tortuous vessels. One issue with VA stenting is optimal coverage of an ostial plaque. The use of a “dual balloon” (allows flaring of the subclavian edge of the stent) is one option. Self expanding stents (SES) are more difficult to deploy as precisely as BES (especially in ostial lesions) and they tend to be used in large diameter VAs. Meta-analyses of non-randomised studies report no differences between drug eluting stents (DES) and bare metal stents (BMS) regarding technical success and procedural complications. However, BMS patients had more recurrent symptoms (11.3% vs. 2.8%, OR 3.3; 95% CI 3.3–8.3, p = .001) and re-interventions (19.2% vs. 4.8%, OR 4.1; 95% CI 2.0–8.2, p = .001) than with DES.616

12.6.3.4. Cerebral protection devices. The use of CPDs in VA interventions has not been adequately investigated.619

12.6.3.5. Pre-dilation. Risks associated with pre-dilation in extracranial VA stenting have not been evaluated. Pre-dilation is indicated if the stent cannot pass through the VA stenosis.

12.6.4. Open surgical management. Options with VA origin lesions include transposition to ipsilateral CCA, VA re-implantation, vein bypass from subclavian artery, and trans-subclavian VA endarterectomy. Distal VA reconstruction can treat lesions within V2 or V3 segments, but worldwide experience is limited. Techniques for reconstructing the V3 segment (C2 to where the VA perforates the dura) include transposition and bypass. Transposition using the ECA, or occliptical artery are options if there is no suitable graft available.617

12.6.5. Complications after vertebral artery interventions

12.6.5.1. Open surgery. Table 42 details outcomes after open VA reconstructions, mostly single centre series. While 30 day death/stroke rates after proximal and/or distal VA reconstructions were relatively low (2–7%), there was evidence that risks were higher if VA reconstructions were combined with carotid procedures (30 day death/stroke 8–33%). Paralysis of the spinal accessory nerve complicated 1–13% of procedures (average 7%), while Horner’s syndrome (temporary or permanent) complicated 2–21% of procedures.

<table>
<thead>
<tr>
<th>Author</th>
<th>Operation</th>
<th>Patients – n</th>
<th>Symptomatic patients – %</th>
<th>Death – %</th>
<th>Any stroke – %</th>
<th>Carotid stroke – %</th>
<th>VB stroke – %</th>
<th>Death / stroke – %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habozi616</td>
<td>All VA ops</td>
<td>109</td>
<td>100</td>
<td>1.8</td>
<td>2.8</td>
<td>0.9</td>
<td>1.8</td>
<td>4.6</td>
</tr>
<tr>
<td>VA ops only</td>
<td>73</td>
<td>0.0</td>
<td>1.4</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA + carotid</td>
<td>36</td>
<td>5.5</td>
<td>5.5</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berguer619</td>
<td>All VA ops</td>
<td>369</td>
<td>94</td>
<td>2.2</td>
<td>3.2</td>
<td>2.2</td>
<td>1.1</td>
<td>3.8</td>
</tr>
<tr>
<td>Prox VA ops</td>
<td>252</td>
<td>1.6</td>
<td>2.8</td>
<td>2.8</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distal VA ops</td>
<td>117</td>
<td>3.4</td>
<td>4.3</td>
<td>0.9</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA ops only</td>
<td>286</td>
<td>2.4</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA + carotid</td>
<td>83</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kieffer617</td>
<td>Distal VA</td>
<td>352</td>
<td>94</td>
<td>2.0</td>
<td>3.4</td>
<td>2.0</td>
<td>1.4</td>
<td>3.4</td>
</tr>
<tr>
<td>VA ops only</td>
<td>264</td>
<td>0.4</td>
<td>2.3</td>
<td>1.1</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA + carotid</td>
<td>88</td>
<td>6.8</td>
<td>6.8</td>
<td>3.4</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hanel620</td>
<td>Proximal VA</td>
<td>29</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramirez621</td>
<td>All VA ops</td>
<td>74</td>
<td>82</td>
<td>4.1</td>
<td>4.1</td>
<td>6.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA ops only</td>
<td>39</td>
<td>0.0</td>
<td>2.6</td>
<td>0.0</td>
<td>2.6</td>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA + carotid</td>
<td>35</td>
<td>5.7</td>
<td>8.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleman622</td>
<td>Distal VA ops</td>
<td>41</td>
<td>91</td>
<td>0.0</td>
<td>2.4</td>
<td>2.4</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>VA ops only</td>
<td>35</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA + carotid</td>
<td>6</td>
<td>0.0</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mert623</td>
<td>Proximal VA</td>
<td>43</td>
<td>100</td>
<td>2.3</td>
<td>4.7</td>
<td>4.7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>VA + carotid</td>
<td>11</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VB = vertebrobasilar.

complicated by dissection. In the absence of specific studies on treating procedural stroke after VA stenting, no recommendations can be made other than advising they should be treated in the same way as after CAS (section 7.1.2).

12.6.5.2.2. In stent re-stenosis after vertebral artery stenting. Table 43 summarises four systematic reviews on in stent re-stenosis (ISR) after VA stenting.

Risk factors for ISR include intracranial stenosis, ostial stenosis, stenosis > 10 mm, smaller stent size, BMS versus DES, higher residual stenosis, VA tortuosity, contralateral VA occlusion, DM, and smoking. A multicentre study (420 patients undergoing VA stenting with BMS (n = 204) or DES (n = 216), reported a mean ISR rate of 26% at 12 months. ISR was statistically significantly lower with DES versus BMS (OR 0.38; 95% CI 0.19 - 0.75, p = 0.010), finding corroborated in another study, where DES were associated with statistically significantly lower ISR rates (18% at one year) versus 31% with BMS (OR 2.6; p = 0.20). In a single centre series, stent fracture rates were 5%, 15%, and 30% at one, three, and five years, respectively, but the majority were asymptomatic.

There are no RCT data to guide management of ISR following VA stenting. In a multicentre, retrospective registry involving 72 patients with ISR ≥ 70% (83% asymptomatic), 48 (67%) underwent treatment by redo stenting (n = 26) or balloon angioplasty (n = 22), without complications. However, the one year rate of stroke/TIA was not notably different in patients undergoing repeat interventions versus BMT, with recurrent re-stenoses developing in 33%. The rate of recurrent ISR was higher (50%) in patients undergoing balloon angioplasty alone versus 22% with redo stenting (p = 0.009). Patients with recurrent VB symptoms after stenting should probably be considered for redo stenting (having ensured all were on optimal BMT). However, there are no data to guide practice in patients with an asymptomatic > 70% re-stenosis after VA stenting.

12.6.6. Surveillance after vertebral artery revascularisation. Open reconstructions for proximal VA lesions are associated with high rates of symptomatic improvement and low rates of re-stenosis. In 29 patients undergoing proximal VA reconstruction, only two developed recurrent VB symptoms, while only one developed a recurrent stenosis. In another series of 36 patients, no re-stenoses or recurrent strokes occurred during a mean follow up of 54 months after VA to subclavian artery transposition. VA stenting is associated with higher rates of ISR. While DUS can identify proximal VA stenoses, it is suboptimal for diagnosing re-stenoses within stented vessels. Accordingly, while a diagnosis of recurrent stenosis after CEA/CAS is more straightforward, surveillance after VA stenting is challenging. DSA was the gold standard, but its use in surveillance cannot be justified (angiographic stroke), especially as recurrent VB events are low. Accordingly, for those advocating surveillance after interventions in the V1 segment of the VA, DUS may be performed at six and 12 months and yearly thereafter. Suspected lesions should be corroborated by CTA/MRA (unless contraindicated) before considering DSA.任何人都应该通过CRA/TMA（除非有禁忌症）在6个月和12个月后，以及每年进行。疑似病变应由CTA/MRA（除非有禁忌症）进行确认，随后考虑DSA。
there were either no data, or conflicting evidence that did not allow recommendations to be made.

Should the 3% (asymptomatic) and 6% (symptomatic) 30 day risk thresholds for performing CEA or CAS be reduced?

Should the time threshold for a patient being defined as recently symptomatic (currently six months) be reduced?

The need for a validated algorithm for identifying ‘high risk for stroke on BMT’ asymptomatic patients in whom to target CEA and CAS.

Is stroke risk on modern BMT in ACS patients lower than when ACAS and ACST-1 were recruiting?

Are 80–99% ACS associated with higher rates of late ipsilateral stroke compared with 60–79% stenoses?

Does measurement of plasma biomarkers (to evaluate excessive endothelial and coagulation system activation) have the potential to aid risk stratification in patients with asymptomatic or symptomatic carotid stenosis?

Does severe ACS cause cognitive impairment and can carotid interventions either reverse or prevent cognitive decline?

What is the effectiveness of low dose rivaroxaban plus aspirin (vs. aspirin alone) in ACS patients?

In patients undergoing mechanical thrombectomy after acute ischaemic stroke, who should undergo synchronous CAS to treat tandem extracranial ICA stenoses and when should CAS (or CEA) be deferred?

For symptomatic patients with a 50–99% stenosis who have undergone thrombolysis, with no evidence of acute cerebral infarction on CT/MRI, should they still wait six days before undergoing a carotid intervention?

Should patients with NIBLs after carotid interventions receive more intense BMT (e.g., combination APRx)?

Are new ischaemic brain lesions after CEA or CAS associated with long term cognitive impairment?

Is carotid artery near occlusion as benign as previously thought in patients presenting with stroke/TIA?

Does intravenous heparin confer additional benefit over dual antiplatelet therapy in patients presenting with crescendo TIAs associated with an ipsilateral 50–99% carotid stenosis?

What is the effectiveness of long term low dose rivaroxaban plus aspirin (vs. aspirin alone) in patients presenting with a recently symptomatic carotid stenosis?

Can transcatheter artery revascularisation be performed safely in the first 7 – 14 days after symptom onset with procedural risks similar to CEA?

Is CEA under locoregional anaesthesia safer than CAS in symptomatic high risk for CEA patients with significant cardiac or chronic pulmonary disease?

Should locoregional anaesthesia be preferred over general anaesthesia in CEA patients?

Does carotid revascularisation improve visual acuity in patients with established, neovascularisation related glaucoma?

Is there a role for routine pre- and post-operative troponin measurement in CEA or CAS patients?

What is the annual hospital or individual surgeon CEA volume needed to maintain competence and safety?

Is there a role for stenting within two weeks of TIA/stroke onset in patients with extracranial VA stenoses?

Is there a role for routine testing of antiplatelet high on-treatment platelet reactivity (HTPR) (previously termed antiplatelet resistance) to guide adjustment of the regimen or dose of antiplatelet therapy?

How best to manage patients with > 70% asymptomatic restenoses after VA stenting?

14. INFORMATION FOR THE PATIENT

The ESVS gratefully acknowledge the assistance of Mr Chris Macey (Irish Heart Foundation and the Stroke Alliance for Europe) for preparing this section and Dr Antonino Logiacco (Alma Mater Studiorum, University of Bologna) for designing the illustrations.

Figure 9. Main blood supply to the brain comes from the carotid and vertebral arteries.
The ESVS has commissioned guidelines for healthcare professionals involved in treating patients with carotid or vertebral artery disease. They were prepared by experts in the field representing vascular surgery, vascular neurology, stroke medicine, interventional radiology, and interventional cardiology.

The carotid arteries are the main arteries supplying blood to the eyes and front of the brain, while the vertebral arteries are the main blood supply to the back of the brain (Figure 9). One of the aims of the guideline is to optimise shared decision making, where you (the patient) have choice and control over how you want to be treated and that you are supported in how your care is delivered. This requires doctors to provide you with as much information as possible, which should include discussion of all available treatment options, together with their risks, benefits, and potential consequences in a manner that you can easily understand.

A carotid or vertebral artery narrowing (otherwise known as a stenosis) may develop because of a condition called atherosclerosis (hardening of the arteries), where deposits of fat and calcium develop in the artery walls. In the carotid artery, most narrowings develop at the point where the carotid artery divides in two. This area is known as the carotid bifurcation (Figure 9). Carotid and vertebral artery stenoses can cause a stroke or a transient ischaemic attack (TIA), which is otherwise known as a warning or mini stroke. The ESVS Guidelines Writing Committee was asked to review the available evidence about the management of carotid and vertebral artery narrowings (which mainly deals with prevention of TIA and stroke), and to make recommendations about how patients like you should be managed.

During the guideline process, all pieces of evidence are considered. A decision is then made about whether the evidence is strong enough to make a firm recommendation which all doctors should follow, or whether the evidence is not strong enough to make a recommendation. In some areas of practice, there is surprisingly little evidence to make a recommendation. The committee then decides whether a particular treatment is one that “Experts” would agree was best. For each recommendation, the committee awards a “level of evidence” from “A” (best quality evidence) to “C” (no real evidence or expert opinion). The committee also awards a “class of recommendation” from class I (strong recommendation and general agreement among experts that the treatment is beneficial, useful, or effective) to III (agreement that the treatment is not effective or may be harmful).

The following is a summary of the advice and recommendations in a format suitable for non-experts. It has been prepared by the ESVS Guidelines Committee in collaboration with patient organisations working to combat stroke.

14.1. How are carotid and vertebral artery narrowings classified, and can their appearance predict an individual patient’s stroke risk?
Narrowings in the artery may stay small and localised (termed a plaque). Their extent and severity can be imaged and measured by ultrasound or other imaging techniques (e.g., computed tomographic (CT) scans or magnetic resonance imaging (MRI) scans). Over time, a plaque may become larger and cause the artery to become more narrowed (or stenosed), which may lead to reduced blood flow beyond the narrowing (Figure 10A). If a plaque causes narrowing of an artery to half its original diameter, this is called a 50% stenosis. If three quarters of the artery is narrowed, this is called a 75% stenosis. If the whole artery is blocked off, this is called an occlusion (Figure 10B).

14.2. Is screening for carotid artery stenosis worthwhile?
At present, screening is not recommended for everyone to see if they have carotid disease, even though this might seem like a sensible thing to do. This is because the chances of identifying someone with an important narrowing of the carotid artery (70% stenosed or more) at the age of 65 years is very small (about one in every 100 people screened).

In addition, even if asymptomatic narrowings are detected (these are stenoses that have never caused a TIA or stroke), in most cases, we would not normally recommend operating on or stenting the stenosis in question. The ESVS (and other national guidelines) sometimes recommend ultrasound screening in a subgroup of usually older patients who have several risk factors for vascular disease (e.g., heart disease, smokers, people with high blood pressure, vascular disease affecting the legs or those with high cholesterol).

It is important to remember that most people with an asymptomatic narrowing in their carotid artery will not experience a stroke (and therefore do not need an operation or intervention), but all will benefit from lifestyle modification and control of vascular risk factors.

14.3. What problems can carotid and vertebral artery disease cause and what warning signs should members of the public look out for?
Carotid and vertebral artery stenoses often cause no problems at all (termed asymptomatic stenoses which are picked up incidentally during other investigations), or they can be directly responsible for causing a TIA or stroke (where stenoses are termed symptomatic).

For every 100 TIAs or strokes, about 15 are due to narrowings of the carotid or vertebral arteries. The most common way in which narrowings cause a TIA or stroke is by small blood clots forming on the surface of the narrowed arteries. These
blood clots can then break off and go into the eye or brain where they can block off the eye or brain blood vessels. These small circulating blood clots are called emboli (Figure 11).

About 20% of strokes due to reduced blood supply to the eye or brain (called ischaemic stroke) are preceded by a TIA. A TIA is caused by a shorter, temporary reduction in blood supply to the brain. A TIA causes exactly the same symptoms as a stroke, but the symptoms usually resolve within minutes, definitely within 24 hours, which is the time based definition for TIA. This provides patients and doctors with an extremely important window of opportunity for urgent stroke prevention. This is why drugs (e.g., aspirin, clopidogrel, dipyridamole) are prescribed to reduce the risk of blood clot formation and so prevent further TIAs or stroke in people with carotid or vertebral narrowings, regardless of whether they need an operation or stent.

An easy way to remember the symptoms of a TIA or stroke is to remember that they can cause the “S” symptoms, involving Sudden problems with:

<table>
<thead>
<tr>
<th>Sight</th>
<th>Blurring or loss of vision or double vision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speech</td>
<td>Impaired expression, understanding or slurring</td>
</tr>
<tr>
<td>Swallowing</td>
<td>Problems swallowing liquids or solids (more common with stroke than TIA)</td>
</tr>
<tr>
<td>Strength</td>
<td>Weakness of the face, arm and/or leg</td>
</tr>
<tr>
<td>Sensation</td>
<td>Usually numbness / reduced feeling and less commonly pins and needles in the face, arm, and/or leg</td>
</tr>
<tr>
<td>Stability</td>
<td>Sudden unsteadiness or a sense that you are moving or the environment around you is moving or spinning, called vertigo</td>
</tr>
</tbody>
</table>

If you experience any of these symptoms, you should seek immediate medical assessment by your family doctor that day or attend your local hospital emergency department (if your family doctor is not available). If you have symptoms of a stroke which are not immediately resolving, you or your relative must call an ambulance to arrange urgent transfer to your local emergency department for immediate investigations and stroke care.

14.4. Can doctors predict which people with carotid disease are most at risk of suffering a stroke?

There has been a lot of debate about whether patients with asymptomatic narrowings should undergo an operation to remove the narrowing, to prevent a stroke from happening. In fact, about 80% of people who have a severe asymptomatic narrowing will not have a stroke over a 10 year period, provided they follow lifestyle advice and take their prescribed medicines.

This means that only a relatively small number of people are at high risk of experiencing a stroke if the stenosis remains in place. Therefore, if they do not have higher risk features which predict an increased risk of TIA/stroke, most patients with asymptomatic carotid narrowings are advised to follow healthy lifestyle advice and to take appropriate medications alone.

In the past, it was difficult to predict who was more likely to have a stroke. The 2023 ESVS guidelines for managing patients with asymptomatic carotid stenosis recommend that several investigations should be performed before any decision is made about the need for an operation or stent. These tests look at the severity of the narrowing in the carotid artery and whether it has become more severe since the last scan (using ultrasound). Brain scans (CT/MRI) are used to see if there is evidence of old areas of reduced blood supply (called infarction), which can occur in some patients even if there have been no obvious symptoms.

Ultrasound scans can look directly at the narrowing to see whether there are any features that make a TIA or stroke more likely (e.g., very large or very soft plaques). It is also possible to detect if little blood clots (emboli) are silently breaking off the surface of the carotid narrowing and going up to the brain without your knowledge. If any of these tests show higher risk features, your doctor may recommend that you have an operation to remove the narrowing.

However, if you present with a TIA or minor stroke and are found to have at least a 50% narrowing of your carotid artery, then your risk of stroke in the next few weeks is increased. In this situation, most people (but not those with an occlusion) will be considered for an operation to remove the narrowing (carotid endarterectomy), or to insert a stent via an arterial puncture in the groin, arm, or neck, to open up the diseased artery (carotid artery stenting). This is especially true in patients with at least a 70% narrowing of the carotid artery.

14.5. Does carotid artery disease cause dementia?

Stroke can also cause problems with memory, language, and paying attention (known as cognitive impairment). Sometimes, stroke can cause dementia, particularly if patients have had multiple strokes. Therefore, it may be possible that a carotid stenosis can increase the risk of dementia. However, many people with carotid stenosis also have vascular disease affecting the small arteries deep inside the brain (especially if they have poorly treated high blood pressure, or have a history of smoking or diabetes), which can also increase the risk of cognitive impairment and dementia.

In patients who have never had any symptoms from their carotid stenosis, research has suggested a possible association with cognitive impairment. However, there is no definite evidence that this type of narrowing is directly responsible for causing dementia. It is possible that in a few patients, the combination of a very severe stenosis, together with markedly reduced brain blood flow, can make cognitive impairment more likely.
14.6. Are chronic kidney disease and carotid artery disease connected?

Not directly. However, if a patient has risk factors for vascular disease (conditions that make a patient more likely to develop narrowings in their arteries), then one or both conditions may co-exist. These risk factors might include untreated or poorly treated high blood pressure and diabetes (which over time, is associated with worsening kidney function, furring up of small arteries inside the brain, and carotid artery narrowings), or smoking (which increases the likelihood of narrowings developing in both carotid and kidney arteries).

14.7. What is meant by best medical therapy?

Everyone with a narrowing in their carotid or vertebral arteries (whether they have symptoms or not) will benefit from lifestyle advice (stopping smoking, losing weight, reducing alcohol intake, better diet, taking more exercise). These lifestyle changes will reduce the risk of having a TIA or stroke in the future.

It is also likely your doctor will advise you to take certain medications. The 2023 ESVS guidelines have greatly expanded its advice for doctors to enable them to prescribe the best possible combinations of medicines to reduce your long term risk of TIA, stroke, or other vascular events (such as heart attacks). These are detailed separately in the guidelines for asymptomatic patients and for symptomatic patients. They include “antiplatelet” tablets (e.g., aspirin, clopidogrel, dipyridamole), which thin the blood and reduce the chances of blood clots passing into the eye or brain and causing a TIA or stroke.

A small number of patients need stronger blood thinning drugs (anticoagulants), especially those with an irregular heartbeat called atrial fibrillation. But this aspect of TIA and stroke prevention and treatment is outside the remit of the current guidelines. If your blood pressure is elevated, you will be advised to take medicines, because treatment of high blood pressure greatly reduces your risk of TIA/stroke or other vascular events.

Patients need to know their own blood pressure readings, lipid profiles, and blood sugar readings (if diabetic) to empower them to work closely with their doctors to reach their treatment targets. We advise aiming for the following targets in relation to blood pressure and cholesterol:

<table>
<thead>
<tr>
<th>Blood pressure targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-diabetic patients under 65 years: ≤130/80 mmHg</td>
</tr>
<tr>
<td>Non-diabetic patients of 65 years and over: systolic 130 –139 mmHg and diastolic <80 mmHg</td>
</tr>
<tr>
<td>Diabetic patients under 65 years: systolic 120–129 mmHg, diastolic 70–79 mmHg</td>
</tr>
<tr>
<td>Diabetic patients of 65 years and over: systolic 120–139 mmHg, diastolic 70–79 mmHg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cholesterol level targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cholesterol: <3.5 mmol/L (<135 mg/dL)</td>
</tr>
<tr>
<td>LDL ‘bad’ cholesterol: <1.8 mmol/L (<70 mg/dL)</td>
</tr>
<tr>
<td>LDL ‘bad’ cholesterol in higher risk patients: <1.4 mmol/L (<54 mg/dL)</td>
</tr>
</tbody>
</table>

Slightly different blood pressure targets are advised for patients with diabetes, as outlined in the table above. In addition, it is likely that your doctor will advise you to take a “statin” tablet (or something similar) to reduce levels of cholesterol and other harmful fats in your blood to further reduce your risk of TIA/stroke or other vascular events. If you have diabetes, your doctor will advise you regarding control of your blood sugar levels.

14.8. Which interventions are currently available?

Some patients with moderate to severe carotid narrowings will be advised to undergo an intervention, with the decision and urgency based on whether you have had recent symptoms or not. There are currently two options. Carotid endarterectomy is an operation which removes the stenosis from the carotid artery via an incision in your neck. Carotid artery stenting is a less invasive intervention. It involves passing a fine wire and tube (catheter) through the skin in the groin, arm, or neck, then into the narrowed artery in the neck to place a stent (a metallic meshlike cylinder) inside the carotid artery to open up the narrowing.

The highest risk period for having a stroke after presenting with a TIA or minor stroke is the first 7 – 14 days, which is why ESVS guidelines advise that carotid endarterectomy or stenting be performed as soon as possible after symptom onset. At present, the available evidence suggests that carotid endarterectomy is preferred to carotid artery stenting during this early time period. However, once you have recovered from your operation or stent insertion, there is good evidence that the long term results of both techniques are identical in terms of preventing further strokes from happening. The risks of developing a recurrent narrowing (re-stenosis) may be slightly higher after stenting than after surgery.

When it comes to planning which intervention is best for you, your doctor will consider a lot of factors (your age, blood vessel appearance, timing of symptoms, and your own preference) before advising which might be the best option for you.

14.9. What does carotid endarterectomy involve?

Carotid endarterectomy is an operation to remove the stenosis inside the carotid artery. It is performed under either local or general anaesthesia and involves an incision on the side of your neck. The carotid artery is identified (Figure 12A), and a medicine called heparin is given to prevent blood clots forming during the procedure. The carotid artery is then clamped and opened (Figure 12B).

Sometimes, a piece of plastic tubing (a shunt) is temporarily inserted to maintain blood flow to the brain during the operation, but this is not always necessary. The stenosis is then carefully removed, and a patch is usually inserted to close the incision in the artery (Figure 12C) to make it a little wider and so reduce the chance of further narrowings developing in the future. The operation takes about one to two hours. When it is finished, you will be kept in the
Most patients return to the vascular ward or stroke unit, and most are discharged on the second post-operative day. The most common reason for delayed discharge is the need to control high blood pressure, which can sometimes increase after carotid surgery and stenting. Thereafter, you will need to continue taking the antiplatelet medications, lipid lowering medications, and any other medications which are prescribed by your doctor in the long term.

14.10. What does carotid artery stenting involve?

Carotid artery stenting is usually performed under local anaesthesia, but some are done under general anaesthesia. The procedure starts by having a small wire and tube (catheter) inserted into an artery in your groin, or arm or low down in your neck. Through this catheter, the stent delivery system is passed up into the carotid artery and then across the stenosis (Figure 13A). As with carotid endarterectomy, you will be given heparin to reduce the chance of blood clots forming on the surface of the stent.

Patients undergoing carotid stenting also receive medicines to prevent the heart rate from slowing down, because stretching up a narrowed carotid can sometimes cause this to occur. Most operators insert a brain protection device, which is designed to prevent blood clots (emboli) passing to the brain during the stent procedure.

The stent is then carefully positioned within the narrowed artery and released, which causes it to open within the artery (Figure 13B). The operator will take lots of X ray pictures to make sure that the stent is positioned correctly. As with carotid endarterectomy, your blood pressure will be monitored for about three hours after the procedure before you return to the ward. Most patients undergoing stenting go home on day one or day two after the intervention.

Your doctor will arrange for you to have two antiplatelet drugs (usually aspirin and clopidogrel), which will have been started before stenting and which are then continued for at least a month after stent insertion. Thereafter, you usually only need to continue taking one of the antiplatelet medications, along with the rest of the medications which are prescribed by your doctor.

14.11. Following surgery or stenting, is scanning to detect a recurrent narrowing necessary?

Weeks to months after endarterectomy or stenting, it is usual to do a scan of the operation site, using an ultrasound scan. After carotid endarterectomy or carotid artery stenting, about 5–10% will develop an asymptomatic recurrent narrowing within the treated artery. This is called a re-stenosis. However, this very rarely causes patients to experience another TIA or stroke.

Health systems across Europe adopt varying approaches to surveillance (imaging arteries after treatment). Some keep everyone under surveillance (using ultrasound), some only keep a small subgroup under surveillance, whereas others do no surveillance at all. The 2023 ESVS guidelines advise post-operative surveillance in a subgroup of patients who either have a > 50% narrowing of the non-operated carotid artery (on the other side of your neck), or who might be at higher risk of having a TIA/stroke should their operated artery block off sometime after your operation.

Your doctor will explain the reasons why surveillance may or may not be necessary when your operation or stent

Figure 12. Site of incision in the carotid artery (dotted line) (A). Carotid artery is opened to reveal the narrowing (B). The narrowing is removed and the artery closed with a patch (C).

Figure 13. A catheter containing the stent is positioned within the stenosis and is then slowly opened out (A). Once the stent has opened, the wires and catheters are removed (B).
procedure is discussed with you, and again after it has been performed.

14.12. How can patients prevent recurrent symptoms or recurrent narrowings?

Evidence suggests that people who are at higher risk of developing a recurrent narrowing (re-stenosis) include: women, patients with diabetes, high cholesterol, chronic kidney disease, poorly treated high blood pressure, and (very importantly) those who smoke after their operation or stenting procedure. Accordingly, it is vital that you remember just how important it is to make any lifestyle changes permanent, as well as taking all the medications prescribed by your doctor to actively treat any vascular risk factors which are under your control.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ejvs.2022.04.011.

APPENDIX B. AUTHORS’ AFFILIATIONS

Writing Committee:

Ross Naylor, Leicester Vascular Institute, Glenfield Hospital, Leicester, UK (chair); Barbara Rantner, Department of Vascular Surgery, University Hospital, LMU Munich, Munich, Germany (co-chair); Stefano Ancetti, University of Bologna, Bologna, Italy; Gert J. de Borst, Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, the Netherlands; Marco De Carlo, Cardiothoracic and Vascular Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Alison Halliday, University of Oxford, Oxford, UK; Stavros K. Kakkos, Department of Vascular Surgery, University of Patras Medical School, Patras, Greece; Hugh S. Markus, University of Cambridge, Cambridge, UK; Dominick J. H. McCabe, Department of Neurology and Stroke Service, Tallaght University Hospital — The Adelaide and Meath Hospital, Incorporating the National Children’s Hospital, and Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Henrik Sillese, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Jos C. van den Berg, Service of Interventional Radiology Centro Vascolare Ticino, Ospedale Regionale di Lugano, sede Civico, Lugano, and Universitätsinstitut für Diagnostische, Interventionelle und Pädiatrische Radiologie, Inselspital, Universitätsspital Bern, Bern, Switzerland; Melina Vega de Ceniga, Hospital de Galdakao-Usansolo, Galdakao, Spain Biocruces-Bizkaia Research Institute, Barakaldo, Spain University of the Basque Country, Leioa, Spain; Maarit A. Venermo, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Frank E.G. Vermassen, Ghent University Hospital, Ghent, Belgium.

ESVS Guideline Committee

George A. Antoniou, Department of Vascular and Endovascular Surgery, Manchester University NHS Foundation Trust, and Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK; Frederico Bastos Goncalves, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central & NOVA Medical School, Lisbon, Portugal; Martin Bjorck, Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden and Department of Surgery, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia; Nabil Chaâl, Department of Vascular Surgery and Kidney Transplantation and GEPROMED, Strasbourg, France; Raphael Coscas, Department of Vascular Surgery, Ambroise Paré University Hospital, AP-HP, University Versailles-Saint-Quentin and Paris-Saclay, Boulougne-Billancourt, France; Nuno V. Dias, Vascular Center, Department of Thoracic and Vascular Surgery, Skåne University Hospital and Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden; Florian Dick, Department of Vascular Surgery, Kantonsspitäl St. Gallen, St. Gallen, and University of Berne, Bern, Switzerland; Robert J. Hinchliffe, Department of Vascular Surgery, University of Bristol, Bristol, UK; Philippe Kolh, Department of Biomedical and Preclinical Sciences, University of Liège, and GIGA Cardiovascular Sciences, University of Liège, Liège, Belgium; Igor B. Koncar, Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Jes S. Lindholt, Department of Cardiothoracic and Vascular surgery, Odense University Hospital and Elite research centre of individualised medicine for arterial disease (CIMA), Odense University Hospital, Odense, Denmark; Barend M.E. Mees, Department of Vascular Surgery, Heart+Vascular Center, Maastricht UMC+, Maastricht, the Netherlands; Timothy A. Resch, Copenhagen University Hospital — Rigshospitalet; Faculty of Health Sciences, Copenhagen University Copenhagen, Copenhagen, Denmark; Santi Trimarchi, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milan — Department of Clinical and Community Sciences, University of Milan, Milan, Italy; Riikka Tulamo, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Christopher P. Twine, North Bristol NHS Trust, Bristol, UK; Anders Wahnhainen, Department of Surgical Sciences, Vascular
Surgery, Uppsala University, Uppsala, and Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden (review coordinator).

Document Reviewers

Sergi Bellmunt-Montoya, Angiology, Vascular and Endovascular Surgery Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Richard Bulbulia, Medical Research Council Population Health Research Unit at the University of Oxford and Clinical Trials Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK; R Clement Darling III, Albany Medical Center, Albany, NY, USA; Hans-Henning Eckstein, Department for Vascular and Endovascular Surgery, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany; Athanasios Giannoukas, Vascular Surgery Department, Faculty of Medicine, School of Health Sciences, University of Thessaly, University Hospital of Larissa, Larissa, Greece; Mark JW Koelmemay, Amsterdam UMC location University of Amsterdam, Department of Surgery, and Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; David Lindstrom, Department of Surgical Sciences, Section of Vascular Surgery, Uppsala University, Uppsala, Sweden; Marc Schermerhorn, Beth Israel Deaconess Medical Center, Boston, MA, USA; David H. Stone, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.

REFERENCES

Noelde JM, Cheng SF, Richards T, Schlaich MP. No evidence for long-term blood pressure differences between eviscerion and conventional carotid endarterectomy in two independent study cohorts. *Eur J Vasc Endovasc Surg* 2022;63:33–42.

patients without increasing the risk of stroke, myocardial infarction, or death in a large national analysis. *Eur J Vasc Endovasc Surg* 2020;60:800–7.

156 Tsantilas P, Kuehn A, Kallmayer M, Knappich C, Schmid S, Breitkreuz T, et al. Risk of stroke or death is associated with the timing of carotid artery stenting for symptomatic carotid steno-

157 Vellimana AK, Washington CW, Yarborough CK, Pilgram TK, Hoh BL, Derdeyn CP, et al. Thrombolysis is an independent risk factor for poor outcome after carotid recanalisation. *Neuro-

162 Wiske C, Arhuidese I, Malas M, Patterson R. Comparing the ef-

166 NeuroVISION Investigators. Peri-operative covert stroke in patients undergoing non-cardiac surgery (NeuroVISION): a pro-

169 Howard G, Roubin GS, Jansen J, Halliday A, Fraedrich G, Eckstein H-H. Association between age and risk of stroke or death from carotid endarterectomy and carotid stenting: a meta-

ural risk than early stenting in patients with symptomatic ste-

171 Moore WS, Popma JJ, Roubin GS, Voeks JH, Jones M, Howard G, et al. Carotid angiographic characteristics in the CREST trial were major contributors to periprocedural stroke and death differences between carotid artery stenting and carotid endar-

176 AGRE II. Available at: agreetrust.org/agree-ii/ [Accessed 25 January 2022].

178 Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ, Culebras A, et al. Updated definition of stroke for the 21st centu-

179 Bamford J. Clinical examination in diagnosis and subclassifi-

186 Rosales JS, Alet MJ, Pujol Lereis VA, Ameriso SF. Fall in the pro-

243 NICE. Type 2 diabetes in adults: management. Available at: https://www.nice.org.uk/guidance/NG28 [Accessed 16 October 2021].

244 NICE. Type 1 diabetes in adults: diagnosis and management. Available at: https://www.nice.org.uk/guidance/NG17 [Accessed 16 October 2021].

245 ABCD. Position papers and guidelines. Available at: https://abcdcareposition-papers [Accessed 16 October 2021].

261 Nicolaides AN, Kakkos SK, Griffin M, Sabetal M, Dhanjil S, Tegos T, et al. Severity of asymptomatic carotid stenosis and risk...

Lindblad B, Persson NH, Takolander R, Bergqvist D, et al. Clopidogrel loading dose regimens: kinetic pro...

Johansson E, Nordanstig A. The issue of optimal timing of carotid revascularisation is both relevant and unresolved. *Eur J Vasc Endovasc Surg* 2022;63:181–3.

